Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep:145:156776.
doi: 10.1016/j.phymed.2025.156776. Epub 2025 May 19.

Keluoxin reduces renal lipid deposition in diabetic nephropathy via AMPK/NF-κB-mediated mtabolic regulation

Affiliations

Keluoxin reduces renal lipid deposition in diabetic nephropathy via AMPK/NF-κB-mediated mtabolic regulation

Shan Zhang et al. Phytomedicine. 2025 Sep.

Abstract

Background: Diabetic nephropathy (DN) is often accompanied by dysregulated lipid metabolism, which exacerbates renal injury. Keluoxin (KLX), a therapeutic agent approved by the National Medical Products Administration of China, has demonstrated efficacy in treating DN. However, the mechanisms underlying KLX's beneficial effects, particularly its role in lipid metabolism regulation, remain poorly understood.

Purpose: To investigate the molecular mechanisms by which KLX ameliorates ectopic lipid deposition (ELD) in DN.

Methods: Spontaneous diabetic nephropathy was induced in KKAy mice, which were then administered oral KLX at doses of 0.9 g/kg or 1.8 g/kg for 12 weeks. The effects of KLX on blood glucose, lipid profiles, proteinuria, and renal function were evaluated. Pathological changes, with a particular focus on ELD, were assessed using Masson's trichrome staining, PASM staining, electron microscopy, and Oil Red O staining. The regulation of the AMPK/NFκB signaling axis was examined through RT-qPCR and Western blotting. In vitro, high-glucose/high-fat conditions were employed to simulate a diabetic environment. The effects of KLX on mesangial cell proliferation and fibrosis under glucolipotoxic conditions were assessed using ROS staining, EDU staining, and SMA staining. To confirm the role of AMPK in KLX-mediated renal protection, the AMPK inhibitor compound C were used for further validation.

Results: KLX treatment significantly reduced blood glucose levels (p<0.01), urinary protein excretion (p<0.05; p<0.01), and serum creatinine and blood urea nitrogen levels (p<0.01), improving renal function in DN mice. Histological analysis revealed that KLX alleviated mesangial expansion, matrix thickening, and renal fibrosis, thus preserving renal structure. It also led to a reduction in peripheral blood triglyceride levels (p<0.01) and mitigated lipid accumulation in both the liver and kidneys. KLX downregulated the mRNA expression of genes associated with lipid synthesis (Fasn, Srebp1, Acc) and fibrosis (Fn1, Pai1), while upregulating the expression of genes involved in lipid breakdown (Cpt1, Cpt2) and antioxidant defense (Sod2, Sod3, Cat). This treatment also enhanced the expression of AMPK and phosphorylated(p) AMPK, while inhibiting NFκB and pNF-κBp65. In vitro, compound C partially inhibited the effects of KLX, and subsequent experiments confirmed that KLX exerts its lipid-regulatory effects through the AMPK/NF-κB axis, thereby attenuating mesangial cell proliferation, fibrosis, and oxidative stress.

Conclusion: These findings provide compelling evidence that KLX regulates lipid metabolism via the AMPK/NFκB axis, inhibiting lipid synthesis and promoting fatty acid oxidation. By reducing ELD, KLX protects renal structure and function in DN, offering a promising therapeutic approach for this condition.

Keywords: AMPK/NFκB axis; Diabetic nephropathy; Ectopic lipid deposition; Keluoxin; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Qing Ni reports financial support was provided by National Natural Science Foundation of China. Qing Ni reports financial support was provided by Construction Special funding project of the Centers for Clinical Medicine Research Center of Guang’anmen Hospital, China Academy of Chinese Medical Sciences. Shan Zhang reports financial support was provided by the China Postdoctoral Science Foundation.

Similar articles

LinkOut - more resources