Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul 1.
doi: 10.1039/d5mh00344j. Online ahead of print.

Carbon-based electrodes for photo-bio-electrocatalytic microbial fuel and electrolysis cells: advances and perspectives

Affiliations
Review

Carbon-based electrodes for photo-bio-electrocatalytic microbial fuel and electrolysis cells: advances and perspectives

Ankita Chaurasiya et al. Mater Horiz. .

Abstract

The growing demand for sustainable energy and effective wastewater treatment has propelled the advancement of bio-electrochemical systems (BESs), particularly microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). These systems integrate bioelectricity generation with organic and inorganic pollutant degradation, offering a sustainable solution for environmental remediation. However, challenges such as high overpotential, reliance on noble metal electrodes, and inconsistent performance have necessitated innovative improvements. The incorporation of photocatalysis into BESs has led to the development of photo-bio-electrochemical systems (PBESs), including photo-microbial fuel cells (PMFCs) and photo-microbial electrolysis cells (PMECs), which leverage optical energy to enhance efficiency. Carbon-based electrode materials, owing to their high porosity, conductivity, and biocompatibility, have emerged as ideal candidates for improving PBES performance. Advanced carbon nanostructures, such as graphene, carbon nanotubes, and metal-graphitic carbon nitride composites, have demonstrated superior photocatalytic properties, promoting enhanced charge separation, CO2 reduction, hydrogen production, and wastewater treatment. PBES integrating light-activated semiconductor materials with BESs, further amplify pollutant degradation and energy conversion efficiency. Despite significant progress, optimizing electrode materials and improving charge transport remain key challenges for scalable and cost-effective deployment. This review highlights the latest advancements in carbon-based electrodes for PBESs, detailing their mechanisms, photocatalytic properties, and future prospects in sustainable energy production and environmental remediation. By addressing existing material limitations and exploring novel photocatalytic enhancements, this work aims to contribute to the development of next-generation PBESs, fostering circular economy practices and carbon-neutral energy solutions.

PubMed Disclaimer

LinkOut - more resources