Large Language Model (LLM)-Based Advances in Prediction of Post-translational Modification Sites in Proteins
- PMID: 40601266
- DOI: 10.1007/978-1-0716-4623-6_19
Large Language Model (LLM)-Based Advances in Prediction of Post-translational Modification Sites in Proteins
Abstract
Post-translational modifications (PTMs) are vital regulators of protein function, influencing a myriad of cellular processes and disease mechanisms. Traditional experimental methods for PTM identification are both costly and labor-intensive, underlining the pressing need for efficient computational approaches. Early computational strategies predominantly relied on primary amino acid sequences and handcrafted features, which often lacked the contextual and structural understanding necessary for precise PTM site prediction. The emergence of transformer-based large language models (LLMs), particularly protein language models (pLMs), has revolutionized PTM prediction by producing context-aware embeddings that capture functional and structural intra-sequence dependencies. In this chapter, we provide a comprehensive review of recent advancements in leveraging LLMs (or, pLMs) for PTM site prediction, an important residue-level task in protein research. We identify emerging trends in the field, including the application of fine-tuning techniques, the integration of embeddings from multiple pLMs, and the incorporation of multiple modalities such as codon-aware embeddings, 3D structural data, and conventional representations. Additionally, we discuss tools that employ graph-based representations, the mamba architecture, and contrastive learning paradigms to further refine pLM-powered PTM site prediction models. We finally explore the interpretability and explainability aspects of the embeddings used in various tools. Despite the significant progress made, persistent limitations remain, and we outline these challenges while proposing directions for future research.
Keywords: AlphaFold; Contrastive learning; Explainability; Fine-tuning; GPT; Graph; Large language model; Mamba; Post-translational modification; Protein language model.
© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
MTPrompt-PTM: A Multi-Task Method for Post-Translational Modification Prediction Using Prompt Tuning on a Structure-Aware Protein Language Model.Biomolecules. 2025 Jun 9;15(6):843. doi: 10.3390/biom15060843. Biomolecules. 2025. PMID: 40563483 Free PMC article.
-
Enhancing Structure-Aware Protein Language Models with Efficient Fine-Tuning for Various Protein Prediction Tasks.Methods Mol Biol. 2025;2941:31-58. doi: 10.1007/978-1-0716-4623-6_2. Methods Mol Biol. 2025. PMID: 40601249
-
Psychometric Evaluation of Large Language Model Embeddings for Personality Trait Prediction.J Med Internet Res. 2025 Jul 8;27:e75347. doi: 10.2196/75347. J Med Internet Res. 2025. PMID: 40627556 Free PMC article.
-
Large Language Model Architectures in Health Care: Scoping Review of Research Perspectives.J Med Internet Res. 2025 Jun 19;27:e70315. doi: 10.2196/70315. J Med Internet Res. 2025. PMID: 40536801 Free PMC article.
-
Enhancing Patient-Trial Matching With Large Language Models: A Scoping Review of Emerging Applications and Approaches.JCO Clin Cancer Inform. 2025 Jun;9:e2500071. doi: 10.1200/CCI-25-00071. Epub 2025 Jun 9. JCO Clin Cancer Inform. 2025. PMID: 40489722 Free PMC article.
References
-
- Keenan EK, Zachman DK, Hirschey MD (2021) Discovering the landscape of protein modifications. Mol Cell 81:1868–1878. https://doi.org/10.1016/j.molcel.2021.03.015 - DOI - PubMed - PMC
-
- Aebersold R, Agar JN, Amster IJ et al (2018) How many human proteoforms are there? Nat Chem Biol 14:206–214. https://doi.org/10.1038/nchembio.2576 - DOI - PubMed - PMC
-
- Hong X, Li N, Lv J et al (2023) PTMint database of experimentally verified PTM regulation on protein–protein interaction. Bioinformatics 39:btac823. https://doi.org/10.1093/bioinformatics/btac823 - DOI - PubMed
-
- Lee JM, Hammarén HM, Savitski MM, Baek SH (2023) Control of protein stability by post-translational modifications. Nat Commun 14:201. https://doi.org/10.1038/s41467-023-35795-8 - DOI - PubMed - PMC
-
- Ryšlavá H, Doubnerová V, Kavan D, Vaněk O (2013) Effect of posttranslational modifications on enzyme function and assembly. J Proteome 92:80–109. https://doi.org/10.1016/j.jprot.2013.03.025 - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous