Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Sep:173:103623.
doi: 10.1016/j.semcdb.2025.103623. Epub 2025 Jul 2.

Force of change: How biomechanical cues drive endothelial plasticity and morphogenesis

Affiliations
Free article
Review

Force of change: How biomechanical cues drive endothelial plasticity and morphogenesis

Dorothee Bornhorst et al. Semin Cell Dev Biol. 2025 Sep.
Free article

Abstract

Endothelial cells (ECs), which line the inner surface of blood vessels, continuously respond to biomechanical forces from blood flow, extracellular matrix, and intracellular tension. Recent advances have highlighted the pivotal role of these forces in regulating cellular plasticity during endothelial-to-hematopoietic transition (EHT) and endothelial-to-mesenchymal transition (EndMT), two processes essential for embryogenesis, tissue repair, and disease progression. EHT contributes to hematopoietic stem cell formation, and EndMT to valve formation and vessel sprouting. When misregulated, both processes cause vascular pathologies such as fibrosis, cancer metastasis, and atherosclerosis. This review provides an overview of how biomechanical cues influence EC fate decisions and behavioral transitions. We explore how external biomechanical forces are sensed at the endothelial cell surface, transmitted through intracellular adaptors, and affect changes at the transcriptional level. Understanding these mechanotransduction pathways during cell fate transition not only deepens our knowledge of endothelial cell plasticity but also provides insight into potential root causes of and treatments for vascular diseases.

Keywords: Biomechanical forces; Endothelial-to-hematopoietic transition; Endothelial-to-mesenchymal transition; Vascular development.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources