Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 2.
doi: 10.2174/0109298665372719250616085616. Online ahead of print.

Engineered Bacteriophages: Advances in Phage Genome Redesign Strategies for Therapeutic and Environmental Applications

Affiliations

Engineered Bacteriophages: Advances in Phage Genome Redesign Strategies for Therapeutic and Environmental Applications

Marzieh Rezaei et al. Protein Pept Lett. .

Abstract

Bacteriophages, or phages, have emerged as powerful platforms in synthetic biology, offering innovative solutions for therapeutic and environmental challenges through advanced genome redesign strategies. This review explores a wide range of phage engineering techniques, including CRISPR (clustered regularly-interspaced short palindromic repeats)-Cas systems, phage display, random and site-directed mutagenesis, retrons, and rebooting approaches, highlighting their potential to create phages with tailored functionalities. CRISPR-Cas systems enable precise genome editing, allowing the development of phages with expanded host ranges, biofilm degradation capabilities, and targeted antimicrobial activity. Phage display facilitates the presentation of peptides on phage surfaces, enabling applications in targeted drug delivery, tumor imaging, and bioremediation. Beyond these, techniques like retron-mediated recombination and homologous recombination offer additional avenues for precise phage genome modification. In the therapeutic realm, engineered phages show promise in combating drug-resistant infections, modulating the microbiome, and delivering targeted therapies for cancer and other diseases. Environmentally, phage-based strategies, such as the use of phage-displayed metal-binding peptides, provide innovative solutions for bioremediation and reducing exposure to toxic heavy metals. This review also addresses challenges, such as phage resistance, immune responses, and the limitations of current engineering methods, while exploring future directions, including the development of improved CRISPR systems, phage-based biosensors, and high-throughput screening platforms. By integrating cutting-edge genome redesign strategies with diverse applications, this review underscores the transformative potential of engineered bacteriophages in addressing global healthcare and environmental sustainability challenges.

Keywords: Engineering; bacteriophage genome; environmental safety.; peptide display; redesigning; therapeutic applications.

PubMed Disclaimer

Similar articles

LinkOut - more resources