Chemical and mechanical patterning of tortoise skin scales occur in different regions of the head
- PMID: 40612900
- PMCID: PMC12225933
- DOI: 10.1016/j.isci.2025.112684
Chemical and mechanical patterning of tortoise skin scales occur in different regions of the head
Abstract
Vertebrate skin appendages are diverse micro-organs such as scales, feathers, and hair. These units typically develop from placodes, whose spatial patterning involves conserved chemical reaction-diffusion dynamics. Crocodile head scales are a spectacular exception to this paradigm, as they instead arise from a mechanically dominated process of compressive folding driven by constrained skin growth. Here, we reveal that chemical versus mechanical processes pattern tortoise scales in different regions of their head. Indeed, we show that placode-derived scales emerge across the peripheral head surfaces while remaining absent from the central dorsal region where scales subsequently form through a mechanical folding process. Using light sheet microscopy, we build a three-dimensional mechanical model that qualitatively recapitulates the diversity of scale patterns observed in this central head region in different tortoise species. Overall, our analyses indicate that mechanical head-scale patterning likely arose before the divergence between Testudinata and Archosauria, and was subsequently lost in birds.
Keywords: Biological sciences; Evolutionary biology; Zoology.
© 2025 The Author(s).
Conflict of interest statement
The authors declare that they have no competing interests.
Figures






Similar articles
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2020 Jan 9;1:CD011535. doi: 10.1002/14651858.CD011535.pub3. PMID: 29271481 Free PMC article. Updated.
-
Pre-deployment programmes for building resilience in military and frontline emergency service personnel.Cochrane Database Syst Rev. 2021 Dec 6;12(12):CD013242. doi: 10.1002/14651858.CD013242.pub2. Cochrane Database Syst Rev. 2021. PMID: 34870330 Free PMC article.
-
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.Health Technol Assess. 2008 Jun;12(28):iii-iv, ix-95. doi: 10.3310/hta12280. Health Technol Assess. 2008. PMID: 18547499
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
References
-
- Kondo S., Miura T. Reaction-Diffusion Model as a Framework of Understanding Biological Pattern Formation. Science (New York, N.Y.) 2010;329:1616–1620. - PubMed
LinkOut - more resources
Full Text Sources