Enhancing drought resilience in Brassica campestris: Antioxidant and physiological benefits of Ascophyllum nodosum extract and alginic acid
- PMID: 40614541
- DOI: 10.1016/j.plaphy.2025.110198
Enhancing drought resilience in Brassica campestris: Antioxidant and physiological benefits of Ascophyllum nodosum extract and alginic acid
Abstract
Global climate change is the reason behind extreme dry weather, which is the primary factor behind reduced crop growth and yield. To mitigate the detrimental effect of drought, biostimulants like Ascophyllum nodosum extract (ANE) and alginic acid (AA) are increasingly used, as they have demonstrated growth-promoting effects on plant. This study was designed to delve into the role of ANE and AA on drought affected rapeseed (Brassica campestris cv. BARI Sarisha-17). Moreover, the study gives a comparative illustration of ANE and one of its principal polysaccharide components AA and explores AA's ability to mimic or surpass the effects of the complete extract. Drought was applied from 15 days after sowing (DAS) by keeping soil moisture level at 25 % field capacity. The control plants were irrigated as per requirement with water. Foliar spraying of ANE (0.02 %) and AA (0.02 %) were initiated after plant establishment. Data on different morphophysiological and biochemical parameters were collected at 35 DAS. Water deficit condition reduced plant growth, biomass accumulation, water balance and chlorophyll pigments. It notably increased oxidative damage by increasing lipid peroxidation, hydrogen peroxide content, proline content, electrolyte leakage, and disrupting glyoxalase system which elevated reactive oxygen species in plants by suppressing antioxidants enzyme activities. Conversely, application of ANE and AA substantially alleviated the detrimental consequences of drought stress with AA being slightly more effective than ANE, by uplifting water balance and redox levels of ascorbate and glutathione. The activities of antioxidant defense and glyoxalase pathway enzymes were also enhanced by exogenous ANE and AA. Both ANE and AA enhanced drought tolerance but it was observed that foliar spraying of AA performed better by reducing oxidative damage and improving antioxidant enzyme activities over plants treated with ANE. These improvements play a crucial role in strengthening rapeseed's resistance to drought conditions.
Keywords: Abiotic stress; Ascorbate-glutathione pathway; Biostimulants; Osmotic stress; Reactive oxygen species; Stress elicitor.
Copyright © 2025 Elsevier Masson SAS. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.Health Technol Assess. 2001;5(32):1-195. doi: 10.3310/hta5320. Health Technol Assess. 2001. PMID: 12065068
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
-
Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants.Int J Mol Sci. 2023 May 9;24(10):8489. doi: 10.3390/ijms24108489. Int J Mol Sci. 2023. PMID: 37239837 Free PMC article.
-
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.Health Technol Assess. 2008 Jun;12(28):iii-iv, ix-95. doi: 10.3310/hta12280. Health Technol Assess. 2008. PMID: 18547499
-
Supplementation with Ascophyllum nodosum extracts mitigates arsenic toxicity by modulating reactive oxygen species metabolism and reducing oxidative stress in rice.Ecotoxicol Environ Saf. 2023 Apr 15;255:114819. doi: 10.1016/j.ecoenv.2023.114819. Epub 2023 Mar 22. Ecotoxicol Environ Saf. 2023. PMID: 36963188
LinkOut - more resources
Full Text Sources