Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 1:227:110198.
doi: 10.1016/j.plaphy.2025.110198. Online ahead of print.

Enhancing drought resilience in Brassica campestris: Antioxidant and physiological benefits of Ascophyllum nodosum extract and alginic acid

Affiliations

Enhancing drought resilience in Brassica campestris: Antioxidant and physiological benefits of Ascophyllum nodosum extract and alginic acid

Mirza Hasanuzzaman et al. Plant Physiol Biochem. .

Abstract

Global climate change is the reason behind extreme dry weather, which is the primary factor behind reduced crop growth and yield. To mitigate the detrimental effect of drought, biostimulants like Ascophyllum nodosum extract (ANE) and alginic acid (AA) are increasingly used, as they have demonstrated growth-promoting effects on plant. This study was designed to delve into the role of ANE and AA on drought affected rapeseed (Brassica campestris cv. BARI Sarisha-17). Moreover, the study gives a comparative illustration of ANE and one of its principal polysaccharide components AA and explores AA's ability to mimic or surpass the effects of the complete extract. Drought was applied from 15 days after sowing (DAS) by keeping soil moisture level at 25 % field capacity. The control plants were irrigated as per requirement with water. Foliar spraying of ANE (0.02 %) and AA (0.02 %) were initiated after plant establishment. Data on different morphophysiological and biochemical parameters were collected at 35 DAS. Water deficit condition reduced plant growth, biomass accumulation, water balance and chlorophyll pigments. It notably increased oxidative damage by increasing lipid peroxidation, hydrogen peroxide content, proline content, electrolyte leakage, and disrupting glyoxalase system which elevated reactive oxygen species in plants by suppressing antioxidants enzyme activities. Conversely, application of ANE and AA substantially alleviated the detrimental consequences of drought stress with AA being slightly more effective than ANE, by uplifting water balance and redox levels of ascorbate and glutathione. The activities of antioxidant defense and glyoxalase pathway enzymes were also enhanced by exogenous ANE and AA. Both ANE and AA enhanced drought tolerance but it was observed that foliar spraying of AA performed better by reducing oxidative damage and improving antioxidant enzyme activities over plants treated with ANE. These improvements play a crucial role in strengthening rapeseed's resistance to drought conditions.

Keywords: Abiotic stress; Ascorbate-glutathione pathway; Biostimulants; Osmotic stress; Reactive oxygen species; Stress elicitor.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources