Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Sep:111:102824.
doi: 10.1016/j.arr.2025.102824. Epub 2025 Jul 5.

Multi-omics strategies to decode the molecular landscape of cellular senescence

Affiliations
Free article
Review

Multi-omics strategies to decode the molecular landscape of cellular senescence

Manuela Giovanna Basilicata et al. Ageing Res Rev. 2025 Sep.
Free article

Abstract

Cellular senescence is a conserved cellular program characterized by a permanent cell cycle arrest triggered by a variety of stressors. Originally described as a tumor-suppressive mechanism, it is now recognized to exert pleiotropic and context-dependent functions, contributing to key physiological processes such as embryogenesis and tissue repair, as well as to processes associated with aging and the development of age-related diseases. Unlike normal cells, senescent cells remain metabolically active despite their non-dividing state. They significantly impact their environment through the Senescence-Associated Secretory Phenotype (SASP), a complex mix of cytokines, growth factors, and proteases. This secretory profile can promote tissue repair and regeneration but, if persistent, contributes to chronic inflammation, fibrosis, and tissue dysfunction. Two major pathways primarily regulate senescence: the p53/p21 and p16^INK4a^/Rb axes. These respond to stress signals like DNA damage, oxidative stress, and oncogenic activation, enforcing stable cell cycle arrest to prevent uncontrolled proliferation. However, as senescent cells accumulate over time, their ongoing SASP activity disrupts tissue homeostasis, driving inflammation and age-related diseases. Recent advances in multi-omics technologies, including metabolomics, proteomics, and lipidomics, have provided deeper insights into the complex molecular changes within senescent cells, revealing new biomarkers and potential therapeutic targets. These approaches offer a comprehensive understanding of cellular senescence, but challenges remain in distinguishing the causal relationships within these data and translating findings into clinical applications. This review integrates recent multi-omics discoveries, highlighting their potential to refine our understanding of senescence and support the development of targeted interventions to extend healthspan and combat age-related pathologies.

Keywords: Aging mechanisms; Metabolic dysregulation; Multi-omics technologies; Senescence.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The undersigned, Prof. Giuseppe Paolisso, declares that All authors have no potential conflicts of interest to be disclosed or relevant financial interest in this manuscript.

Similar articles