A 96-Well Ultrafiltration Approach for the High-Throughput Proteome Analysis of Extracellular Vesicles Isolated From Conditioned Medium
- PMID: 40619995
- PMCID: PMC12230347
- DOI: 10.1002/jev2.70103
A 96-Well Ultrafiltration Approach for the High-Throughput Proteome Analysis of Extracellular Vesicles Isolated From Conditioned Medium
Abstract
Extracellular vesicles (EVs), nanoscale vesicles that are secreted by cells, are critical mediators of intercellular communication and play a crucial role in diverse pathologies such as cancer development. Therefore, EVs are regarded as having high potential in the clinic, both for diagnostic and therapeutic applications. Unfortunately, EVs reside in complex biofluids and their consistent preparation at sufficient purity for mass spectrometry-based proteomics has proven to be challenging, especially when increased high-throughput is required. Here, we describe the incorporation of our previously reported filter-aided EV enrichment (FAEVEr) strategy for the separation of EVs from conditioned medium, from harvest to proteomic analysis completely to a streamlined 96-well format. We compared our approach with ultracentrifugation, the most widely used method for EV enrichment, in terms of protein identifications, consistency, reproducibility and overall performance, including the invested time, resources and required expertise. In addition, our results show that including relative high percentages of Tween-20, a mild detergent, markedly improves the final purity of the EV proteome by removing the bulk of non-EV proteins (e.g., serum proteins) and significantly increases the number of identified transmembrane proteins. Moreover, our FAEVEr 96-well strategy improves the overall reproducibility with a consistent number of protein identifications and decreased number of missing values across replicates. This promotes the validity and comparability between results, which is essential in both a clinical and research setting, where consistency is paramount.
Keywords: 300 kDa MWCO 96‐well ultrafiltration; Tween‐20; conditioned medium; proteomics.
© 2025 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Systematic proteomic and small RNA profiling of extracellular vesicles from cattle infected with a naturally occurring buparvaquone-resistant strain of Theileria annulata and from uninfected controls.Parasit Vectors. 2025 Jun 10;18(1):221. doi: 10.1186/s13071-025-06834-8. Parasit Vectors. 2025. PMID: 40495253 Free PMC article.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease.Cochrane Database Syst Rev. 2001;(3):CD003234. doi: 10.1002/14651858.CD003234. Cochrane Database Syst Rev. 2001. Update in: Cochrane Database Syst Rev. 2005 Jul 20;(3):CD003234. doi: 10.1002/14651858.CD003234.pub2. PMID: 11687058 Updated.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2. Cochrane Database Syst Rev. 2017. Update in: Cochrane Database Syst Rev. 2020 Jan 9;1:CD011535. doi: 10.1002/14651858.CD011535.pub3. PMID: 29271481 Free PMC article. Updated.
References
-
- Brambilla, D. , Sola L., Ferretti A. M., et al. 2021. “EV Separation: Release of Intact Extracellular Vesicles Immunocaptured on Magnetic Particles.” Analytical Chemistry 93, no. 13: 5476–5483. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources