Early warning score and feasible complementary approach using artificial intelligence-based bio-signal monitoring system: a review
- PMID: 40621610
- PMCID: PMC12226448
- DOI: 10.1007/s13534-025-00486-4
Early warning score and feasible complementary approach using artificial intelligence-based bio-signal monitoring system: a review
Abstract
Early warning score (EWS) have become an essential component of patient safety strategies in healthcare environments worldwide. These systems aim to identify patients at risk of clinical deterioration by evaluating vital signs and other physiological parameters, enabling timely intervention by rapid response teams. Despite proven benefits and widespread adoption, conventional EWS have limitations that may affect their ability to effectively detect and respond to patient deterioration. There is growing interest in integrating continuous multimodal monitoring technologies and advanced analytics, particularly artificial intelligence (AI) and machine learning (ML)-based approaches, to address these limitations and enhance EWS performance. This review provides a comprehensive overview of the current state and potential future directions of AI-based bio-signal monitoring in early warning system. It examines emerging trends and techniques in AI and ML for bio-signal analysis, exploring the possibilities and potential applications of various bio-signals such as electroencephalography, electrocardiography, electromyography in early warning system. However, significant challenges exist in developing and implementing AI-based bio-signal monitoring systems in early warning system, including data acquisition strategies, data quality and standardization, interpretability and explainability, validation and regulatory approval, integration into clinical workflows, and ethical and legal considerations. Addressing these challenges requires a multidisciplinary approach involving close collaboration between healthcare professionals, data scientists, engineers, and other stakeholders. Future research should focus on developing advanced data fusion techniques, personalized adaptive models, real-time and continuous monitoring, explainable and reliable AI, and regulatory and ethical frameworks. By addressing these challenges and opportunities, the integration of AI and bio-signals into early warning systems can enhance patient monitoring and clinical decision support, ultimately improving healthcare quality and safety. In conclusion, integrating AI and bio-signals into the early warning system represents a promising approach to improve patient care outcomes and support clinical decision-making. As research in this field continues to evolve, it is crucial to develop safe, effective, and ethically responsible solutions that can be seamlessly integrated into clinical practice, harnessing the power of innovative technology to enhance patient care and improve individual and population health and well-being.
Keywords: Artificial intelligence; Deep learning; Early warning score; Early warning systems; Machine learning; Multimodal bio-signals; Patient deterioration; Rapid response team.
© The Author(s) 2025.
Conflict of interest statement
Conflict of interestNo conflicts of interest.
Figures
Similar articles
-
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.Therap Adv Gastroenterol. 2025 Jun 23;18:17562848251348574. doi: 10.1177/17562848251348574. eCollection 2025. Therap Adv Gastroenterol. 2025. PMID: 40556746 Free PMC article. Review.
-
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.Future Sci OA. 2025 Dec;11(1):2527505. doi: 10.1080/20565623.2025.2527505. Epub 2025 Jul 4. Future Sci OA. 2025. PMID: 40616302 Free PMC article. Review.
-
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.J Health Organ Manag. 2025 Jun 30. doi: 10.1108/JHOM-01-2025-0029. Online ahead of print. J Health Organ Manag. 2025. PMID: 40574247
-
The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.JBI Database System Rev Implement Rep. 2016 Apr;14(4):138-97. doi: 10.11124/JBISRIR-2016-2159. JBI Database System Rev Implement Rep. 2016. PMID: 27532315
-
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843. JBI Database System Rev Implement Rep. 2016. PMID: 27532314
References
-
- Pramono A, Setyawan YB, Chayati N, Widyastuti Y, Azizah S. Risk factors for cardiac arrest in the intensive care unit (ICU). AIP Conf Proc. 2024;3165:070003. 10.1063/5.0218028.
-
- Bleyer AJ, Vidya S, Russell GB, Jones CM, Sujata L, Daeihagh P, et al. Longitudinal analysis of one million vital signs in patients in an academic medical center. Resuscitation. 2011;82(11):1387–92. 10.1016/j.resuscitation.2011.06.033. - PubMed
-
- Hillman K, Bristow P, Chey T, Daffurn K, Jacques T, Norman S, et al. Duration of life-threatening antecedents prior to intensive care admission. Intensive Care Med. 2002;28(11):1629–34. 10.1007/s00134-002-1496-y. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials