Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 7;31(44):e202502197.
doi: 10.1002/chem.202502197. Epub 2025 Jul 21.

An Alumanyl Test Case of Group 1 Redox Interchange

An Alumanyl Test Case of Group 1 Redox Interchange

Kyle G Pearce et al. Chemistry. .

Abstract

Rationalized by a thermochemical evaluation using both theoretical density functional theory (DFT) and empirical data, we show that the arene-encapsulated M+ cations of the group 1 alumanyls, [{SiNDipp}AlM]2 ({SiNDipp} = {CH2SiMe2N(Dipp)}2; Dipp = 2,6-i-Pr2C6H3); M = Li, Na, K, Rb, Cs] may be interconverted by redox reactions with the elemental alkali metals. These observations contradict the established E0 data and allow access to an otherwise inaccessible sodium derivative.

Keywords: alumanyl; cesium; density functional theory; lithium; potassium; rubidium; sodium.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The structures of compounds 1 and 2.
Scheme 1
Scheme 1
a) Alkali metal reduction of 3 to provide 4K , 4Rb , 4Cs, and 5; b) the structure of 6; c) the synthesis of compounds 7 M by alkali metal (M = Na, K, Rb, Cs) reduction of 7Li .
Scheme 2
Scheme 2
Synthesis of 4Li∙2THF and 4Li .
Figure 2
Figure 2
Molecular structures of a) compound 4Li·2THF and b) compound 4Li with displacement ellipsoids at 30%. For clarity, hydrogen and disordered atoms, and occluded benzene (4Li ) are omitted. Similarly, Dipp groups not involved in π∙∙∙arene interactions and THF ligands are displayed as wireframe. Selected bond lengths (Å) and angles (°): (4Li·2THF) Al1‐N2 1.886(2), Al1‐N1 1.884(2), Al1‐Li1 2.710(6), Li1‐O1 1.891(6), Li1‐O2 1.910(6), N1‐Al1‐N2 109.11(10), N2‐Al1‐Li1 127.71(14), N1‐Al1‐Li1 123.10(14); (4Li ) Al1‐N1 1.8956(19), Al1‐N2 1.873(2), Al1‐Li1 2.808(5), N1‐Al1‐Li11 129.08(12), N2‐Al1‐N1 110.54(9), N2‐Al1‐Li11 120.21(12). Symmetry operations to generate primed atoms: 11‐x, 1‐y, 2‐z.
Scheme 3
Scheme 3
Synthesis of compound 4Na .
Figure 3
Figure 3
Molecular structure of compound 4Na with displacement ellipsoids at 30%. For clarity, hydrogen and disordered atoms are omitted. Similarly, Dipp groups not involved in π∙∙∙arene interactions are displayed as wireframe. Selected bond lengths (Å) and angles (°): Al1‐Na1 3.316(6), Al1‐Na2 3.105(6), Al1‐N1 1.883(9), Al1‐N2 1.854(9), Al2‐Na1 3.048(5), Al2‐N3 1.894(10), Al2‐N4 1.888(10), N2‐Al1‐N1 110.1(4) N4‐Al2‐N3 109.9(4), N1‐Al1‐Na1 87.7(3), N1‐Al1‐Na2 150.8(3), N2‐Al1‐Na1 159.6(3), N2‐Al1‐Na2 98.7(3), N3‐Al2‐Na1 135.3(3), N4‐Al2‐Na1 114.8(3), Al2‐Na1‐Al1‐128.64(19).
Scheme 4
Scheme 4
Observed scope of the group 1 redox reactivity of 4 M .

References

    1. (a) Lok M. T., Dye J. L., Tehan F. J., J. Phys. Chem. 1972, 76, 2975;
    2. (b) Ceraso J. M., Dye J. L., J. Chem. Phys. 1974, 61, 1585;
    3. (c) Tehan F. J., Barnett B. L., Dye J. L., J. Am. Chem. Soc. 1974, 96, 7203;
    4. (d) Dye J. L., Andrews C. W., Ceraso J. M., J. Phys. Chem. 1975, 79, 3076;
    5. (e) Dye J. L., J. Chem. Ed. 1977, 54, 332;
    6. (f) Dye J. L., Angew. Chem. Int. Ed. Engl. 1979, 18, 587;
    7. (g) Le L. D., Issa D., Vaneck B., Dye J. L., J. Phys. Chem. 1982, 86, 7;
    8. (h) Schindewolf U., Le L. D., Dye J. L., J. Phys. Chem. 1982, 86, 2284;
    9. (i) Issa D., Ellaboudy A., Janakiraman R., Dye J. L., J. Phys. Chem. 1984, 88, 3847;
    10. (j) Phillips R. C., Khazaeli S., Dye J. L., J. Phys. Chem. 1985, 89, 606;
    11. (k) Concepcion R., Dye J. L., J. Am. Chem. Soc. 1987, 109, 7203;
    12. (l) Jaenicke S., Faber M. K., Dye J. L., Pratt W. P., J. Solid State Chem. 1987, 68, 239;
    13. (m) Papaioannou J., Jaenicke S., Dye J. L., J. Solid State Chem. 1987, 67, 122;
    14. (n) Dye J. L., Debacker M. G., Ann. Rev. Phys. Chem. 1987, 38, 271;
    15. (o) Dawes S. B., Ward D. L., Fussarydel O., Huang R. H., Dye J. L., Inorg. Chem. 1989, 28, 2132;
    16. (p) Huang R. H., Ward D. L., Dye J. L., J. Am. Chem. Soc. 1989, 111, 5707;
    17. (q) Ward D. L., Huang R. H., Dye J. L., Acta Cryst. C Cryst. Struct. Commun. 1990, 46, 1833;
    18. (r) Ward D. L., Huang R. H., Dye J. L., Acta Cryst. C Cryst. Struct. Commun. 1990, 46, 1838;
    19. (s) Kim J. N., Dye J. L., J. Phys. Chem. 1990, 94, 5399;
    20. (t) Debacker M. G., Sauvage F. X., Dye J. L., Chem. Phys. Lett. 1990, 173, 291;
    21. (u) Dye J. L., J.l De Physique IV 1991, 1, 259;
    22. (v) Eglin J. L., Jackson E. P., Moeggenborg K. J., Dye J. L., Bencini A., Micheloni M., J. Inclus. Phenom. Mol. Rec. Chem. 1992, 12, 263;
    23. (w) Hendrickson J. E., Pratt W. P., Kuo C. T., Xie Q. S., Dye J. L., J. Phys. Chem. 1996, 100, 3395;
    24. (x) Hendrickson J. E., Xu G. Z., Pratt W. P., Dye J. L., J. Phys. Chem. A 1997, 101, 4149;
    25. (y) Huang R. H., Huang S. Z., Dye J. L., J. Coord. Chem. 1998, 46, 13;
    26. (z) Kim J., Ichimura A. S., Huang R. H., Redko M., Phillips R. C., Jackson J. E., Dye J. L., J. Am. Chem. Soc. 1999, 121, 10666;
    27. (aa) Redko M. Y., Vlassa M., Jackson J. E., Misiolek A. W., Huang R. H., Dye J. L., J. Am. Chem. Soc. 2002, 124, 5928; - PubMed
    28. (ab) Redko M. Y., Huang R. H., Jackson J. E., Harrison J. F., Dye J. L., J. Am. Chem. Soc. 2003, 125, 2259; - PubMed
    29. (ac) J. L., Dye, Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140174. - PubMed
    1. (a) Fischer R. C., Power P. P., Chem. Rev. 2010, 110, 3877; - PubMed
    2. (b) Asay M., Jones C., Driess M., Chem. Rev. 2011, 111, 354. - PubMed
    1. (a) Green S. P., Jones C., Stasch A., Science 2007, 318, 1754; - PubMed
    2. (b) Evans M. J., Jones C., Chem. Soc. Rev. 2024, 53, 5054; - PubMed
    3. (c) Rösch B., Gentner T. X., Eyselein J., Langer J., Elsen H., Harder S., Nature 2021, 592, 717. - PubMed
    1. (a) Hicks J., Vasko P., Goicoechea J. M., Aldridge S., Nature 2018, 557, 92; - PubMed
    2. (b) Schwamm R. J., Anker M. D., Lein M., Coles M. P., Angew. Chem. Int. Ed. 2019, 58, 1489; - PubMed
    3. (c) Schwamm R. J., Coles M. P., Hill M. S., Mahon M. F., McMullin C. L., Rajabi N. A., Wilson A. S. S., Angew. Chem. Int. Ed. 2020, 59, 3928; - PMC - PubMed
    4. (d) Hicks J., Vasko P., Goicoechea J. M., Aldridge S., Angew. Chem. Int. Ed. 2021, 60, 1702; - PubMed
    5. (e) Coles M. P., Evans M. J., Chem. Commun. 2023, 59, 503; - PubMed
    6. (f) Coles M. P., ‘Aluminyl Anions’. In Encyclopedia of Inorganic and Bioinorganic Chemistry 2024, 1‐23, Wiley.
    1. (a) Evans M. J., Anker M. D., McMullin C. L., Neale S. E., Coles M. P., Angew. Chem. Int. Ed. 2021, 60, 22289; - PubMed
    2. (b) Gentner T. X., Evans M. J., Kennedy A. R., Neale S. E., McMullin C. L., Coles M. P., Mulvey R. E., Chem. Commun. 2022, 58, 1390; - PubMed
    3. (c) Liu H.‐Y., Hill M. S., Mahon M. F., McMullin C. L., Schwamm R. J., Organometallics 2023, 42, 2881; - PMC - PubMed
    4. (d) Grams S., Mai J., Langer J., Harder S., Dalton Trans. 2022, 51, 12476. - PubMed

LinkOut - more resources