Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec 5;821(2):367-76.
doi: 10.1016/0005-2736(85)90107-5.

Symmetry properties of the Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles

Symmetry properties of the Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles

K D Philipson. Biochim Biophys Acta. .

Abstract

The Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles can catalyze the exchange of Ca2+ on either side of the sarcolemmal membrane for Na+ on the opposing side. Little is known regarding the relative affinities of Na+ and Ca2+ for exchanger binding sites on the intra- and extracellular membrane surfaces. We have previously reported (Philipson, K.D. and Nishimoto, A.Y. (1982) J. Biol. Chem. 257, 5111-5117) a method for measuring the Na+-Ca2+ exchange of only the inside-out vesicles in a mixed population of sarcolemmal vesicles (predominantly right-side-out). We concluded that the apparent Km(Ca2+) for Na+i-dependent Ca2+ uptake was similar for inside-out and right-side-out vesicles. In the present study, we examine in detail Na+o-dependent Ca2+ efflux from both the inside-out and the total population of vesicles. To load vesicles with Ca2+ prior to measurement of Ca2+ efflux, four methods are used: 1, Na+-Ca2+ exchange; 2, passive Ca2+ diffusion; 3, ATP-dependent Ca2+ uptake; 4, exchange of Ca2+ for Na+ which has been actively transported into vesicles by the Na+ pump. The first two methods load all sarcolemmal vesicles with Ca2+, while the latter two methods selectively load inside-out vesicles with Ca2+. We are able to conclude that the dependence of Ca2+ efflux on the external Na+ concentration is similar in inside-out and right-side-out vesicles. Thus the apparent Km(Na+) values (approximately equal to 30 mM) of the Na+-Ca2+ exchanger are similar on the two surfaces of the sarcolemmal membrane. In other experiments, external Na+ inhibited the Na+i-dependent Ca2+ uptake of the total population of vesicles much more potently than that of the inside-out vesicles. Apparently Na+ can compete for the Ca2+ binding site more effectively on the external surface of right-side-out than on the external surface of inside-out vesicles. Thus, although affinities for Na+ or Ca2+ (in the absence of the other ion) appear symmetrical, the interactions between Na+ and Ca2+ at the two sides of the exchanger are not the same. The Na+-Ca2+ exchanger is not a completely symmetrical transport protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources