Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec 13;843(3):199-207.
doi: 10.1016/0304-4165(85)90140-0.

Mitochondrial iron not bound in heme and iron-sulfur centers and its availability for heme synthesis in vitro

Mitochondrial iron not bound in heme and iron-sulfur centers and its availability for heme synthesis in vitro

A Tangerås. Biochim Biophys Acta. .

Abstract

Rat liver mitochondrial fractions have previously been shown to contain a pool of iron which was bound neither in cytochromes nor in iron-sulfur centers (Tangerås, A., Flatmark, T., Bãckstrõm, D. and Ehrenberg, A. (1980) Biochim. Biophys. Acta 589, 162-175), and in the present study the availability of this iron pool for heme synthesis has been studied in isolated mitochondria. A minor fraction of this iron is here shown to originate from iron-rich lysosomes present as a contaminant in mitochondrial fractions isolated by differential centrifugation, and a method for the selective quantitation of this iron pool was developed. The availability of the mitochondrial iron pool for heme synthesis by mitochondria in vitro was studied using a recently developed HPLC method for the assay of ferrochelatase activity. When deuteroporphyrin was used as the substrate, 1.04 +/- 0.13 nmol/mg protein of deuteroheme was formed after 6 h incubation at 37 degrees C when a plateau was approached, and the initial rate of heme synthesis was 0.3 nmol/h per mg protein. Heme formation from the physiological substrate protoporphyrin was also seen. The heme synthesis increased with the amount of mitochondria used and was blocked by both Fe(II) and Fe(III) chelators. The heme synthesis was independent of mitochondrial oxidizable substrates and no difference was observed between pH 7.4 and 6.5. FMN slightly stimulated the formation of heme from endogenous iron, probably by mobilization of a small amount of contaminating lysosomal iron present in the preparations. The possibility that the mitochondrial iron pool functions as the proximate iron donor for heme synthesis by ferrochelatase in vivo is discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources