Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 20;15(13):11530-11543.
doi: 10.1021/acscatal.5c02021. eCollection 2025 Jul 4.

Oxidation of Alcohols to Carboxylates with N2O Catalyzed by Ruthenium(II)-CNC Complexes

Affiliations

Oxidation of Alcohols to Carboxylates with N2O Catalyzed by Ruthenium(II)-CNC Complexes

José Bermejo et al. ACS Catal. .

Abstract

Air-stable ruthenium-(II) complexes based on a picoline-derived CNC pincer ligand, [RuH-(CNC)-(CO)L]X (L = PPh3, X = Br; L = CO, X = BF4), were found to catalyze under basic conditions the oxidation with N2O of a series of alcohols to carboxylates. Both [RuH-(CNC)-(CO)L]X complexes react readily with strong bases (tBuOK or KHMDS), giving rise to a Ru-(II) complex containing a deprotonated CNC* ligand (when L = PPh3) or a Ru(0)-CNC derivative (for L = CO). Furthermore, the mechanism of the catalytic reaction has been elucidated through density functional theory (DFT) calculations. The catalytic cycle has been shown to proceed through an outer-sphere mechanism comprising four key transformations, which involve Ru-(II) intermediates based on the deprotonated CNC* ligand: (i) alkoxide dehydrogenation to yield a Ru-(II) hydride complex and an aldehyde molecule, (ii) N2O insertion into the ruthenium-hydride bond to yield a hydroxy ruthenium species and N2, (iii) nucleophilic attack of the hydroxo ligand in the Ru-OH complex to the intermediate aldehyde, and (iv) dehydrogenation of the formed alcoholate to regenerate the catalytically active Ru-(II) hydride and produce the carboxylate product.

Keywords: alcohols; carboxylates; nitrous oxide; ruthenium complexes; transfer hydrogenation.

PubMed Disclaimer

Figures

1
1. Synthesis of the Bis-imidazolium Salt (2), and Silver (3) and Ruthenium (4 and 5) Complexes
1
1
ORTEP perspective (50% ellipsoid probability) of the cationic fragment 4 + . Counteranion is a 9:1 mixture of Cl and Br, respectively. Hydrogen atoms, with exception of the hydrido ligand and the methylene hydrogens, have been omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ru(1)–N(3) 2.1401(19), Ru(1)–C(1) 2.086(2), Ru(1)–C(19) 2.046(2), Ru(1)–C(49) 1.848(3), Ru(1)–P(1) 2.4502(6), C(1)–Ru(1)–C(19) 156.04(9), C(1)–Ru(1)–N(3) 88.26(8), C(19)–Ru(1)–N(3) 76.75(8), C(49)–Ru(1)–N(3) 172.24(9), C(1)–Ru(1)–P(1) 103.58(7), C(19)–Ru(1)–P(1) 94.89(7), C(1)–Ru(1)–C(49) 95.59(10), C(19)–Ru(1)–C(49) 97.36(10), C(49)–Ru(1)–P(1) 96.47­(8), N(3)–Ru(1)–P(1) 89.14(5).
2
2. Reactions of Ru­(II)-CNC Complexes 4 and 5 with Strong Bases
2
2
ORTEP perspective (50% ellipsoid probability) of complex 6. Hydrogen atoms, with exception of the hydrido ligand and the methine hydrogen, have been omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ru(1)–N(3) 2.133(3), Ru(1)–C(1) 2.073(3), Ru(1)–C(19) 2.050(3), Ru(1)–C(49) 1.841(3), Ru(1)–P(1) 2.4602(8), C(1)–Ru(1)–C(19) 162.35(13), C(1)–Ru(1)–N(3) 88.60(13), C(19)–Ru(1)–N(3) 78.31(13), C(49)–Ru(1)–N(3) 170.76(13), C(1)–Ru(1)–P(1) 97.44(9), C(19)–Ru(1)–P(1) 94.20(9), C(1)–Ru(1)–C(49) 95.71(14), C(19)–Ru(1)–C(49) 95.69(14), C(49)–Ru(1)–P(1) 98.26(10), N(3)–Ru(1)–P(1) 89.25(8).
3
3
DFT calculated stabilities of the Ru­(II)-CNC* (6 and 7) and Ru(0)-CNC (6-iso and 7-iso) complexes, and interconversion energy barriers (ΔG ). In parentheses, energies (ΔG in THF) in kcal/mol.
4
4
Reaction steps (1a)–(1c) and the overall reaction (2) of the oxidation of alcohols with N2O under basic conditions.
5
5
Catalytic control experiments: (i) acceptorless dehydrogenation of 1-hexanol, (ii) oxidation of 1-hexanol with N2O in the presence of 4 Å molecular sieves, (iii) hydrogenation of N2O, and (iv) oxidation of benzaldehyde with H2O.
3
3. Catalytic Cycle Calculated by DFT for the Oxidation of Ethanol with N2O Catalyzed by Complex 6
6
6
Free energy (ΔG in toluene, kcal/mol) profile calculated by DFT for the PPh3 dissociation from 6 and alcohol dehydrogenation by A (the origin of energies is 6 + EtO + 2 N2O).
7
7
Geometries optimized by DFT of the TS A→B , TS B→A , TS C→D , TS′ C→D , TS D→A and TS′ A→B transition states.
8
8
Free energy (ΔG in toluene, kcal/mol) profile calculated by DFT for N2O reduction by complex B (the origin of energies is 6 + EtO + 2 N2O).
9
9
Free energy (ΔG in toluene, kcal/mol) profile calculated by DFT for the nucleophilic attack of Ru–OH (D) to acetaldehyde, 1-hydroxyethanolate dehydrogenation and acetic acid deprotonation by D (the origin of energies is 6 + EtO + 2 N2O).
10
10
Labeling for NMR signal assignment of complex 6.

Similar articles

References

    1. Hansen J., Sato M.. Greenhouse Gas Growth Rates. Proc. Natl. Acad. Sci. U. S. A. 2004;101:16109–16114. doi: 10.1073/pnas.0406982101. - DOI - PMC - PubMed
    2. Rodhe H.. A Comparison of the Contribution of Various Gases to the Greenhouse Effect. Science. 1990;248:1217–1219. doi: 10.1126/science.248.4960.1217. - DOI - PubMed
    3. Montzka S. A., Dlugokencky E. J., Butler J. H.. Non-CO2 Greenhouse Gases and Climate Change. Nature. 2011;476:43–50. doi: 10.1038/nature10322. - DOI - PubMed
    1. Prather M. J.. Time Scales in Atmospheric Chemistry: Coupled Perturbations to N2O, NOγ, and O3 . Science. 1998;279:1339–1341. doi: 10.1126/science.279.5355.1339. - DOI - PubMed
    2. Ravishankara A. R., Daniel J. S., Portmann R. W.. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science. 2009;326:123–125. doi: 10.1126/science.1176985. - DOI - PubMed
    1. Davidson E. A., Kanter D.. Inventories and Scenarios of Nitrous Oxide Emissions. Environ. Res. Lett. 2014;9:105012. doi: 10.1088/1748-9326/9/10/105012. - DOI
    1. For some selected examples, see:

    2. Jabłońska M., Palkovits R.. It Is No Laughing Matter: Nitrous Oxide Formation in Diesel Engines and Advances in its Abatement over Rhodium-Based Catalyst. Catal. Sci. Technol. 2016;6:7671–7687. doi: 10.1039/C6CY01126H. - DOI
    3. Deeba R., Molton F., Chardon-Noblat S., Costentin C.. Effective Homogeneous Catalysis of Electrochemical Reduction of Nitrous Oxide to Dinitrogen at Rhenium Carbonyl Catalyst. ACS Catal. 2021;11:6099–6103. doi: 10.1021/acscatal.1c01197. - DOI
    4. Ko B. H., Hasa B., Shin H., Zhao Y., Jiao F.. Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions. J. Am. Chem. Soc. 2022;144:1258–1266. doi: 10.1021/jacs.1c10535. - DOI - PubMed
    5. Konsolakis M.. Recent Advances on Nitrous Oxide (N2O) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects. ACS Catal. 2015;5:6397–6421. doi: 10.1021/acscatal.5b01605. - DOI
    6. Kjellberg M., Ohleier A., Thuéry P., Nicolas E., Anthore-Dalion L., Cantat T.. Photocatalytic Deoxygenation of N-O Bonds with Rhenium Complexes: From the Reduction of Nitrous Oxide to Pyridine N-Oxides. Chem. Sci. 2021;12:10266–10272. doi: 10.1039/D1SC01974K. - DOI - PMC - PubMed
    7. Kapteijn F., Rodriguez-Mirasol J., Moulijn J. A.. Heterogeneous Catalytic Decomposition of Nitrous Oxide. Appl. Catal., B. 1996;9:25–64. doi: 10.1016/0926-3373(96)90072-7. - DOI
    8. López J. C., Quijano G., Souza T. S. O., Estrada J. M., Lebrero R., Muñoz R.. Biotechnologies for Greenhouse Gases (CH4, N2O, and CO2) Abatement: State of the Art and Challenges. Appl. Microbiol. Biotechnol. 2013;97:2277–2303. doi: 10.1007/s00253-013-4734-z. - DOI - PubMed
    9. Denisova K. O., Ilyin A. A., Rumyantsev R. N., Ilyin A. P., Volkova A. V.. Nitrous Oxide: Production, Application, and Protection of the Environment. Russ. J. Gen. Chem. 2019;89:1338–1346. doi: 10.1134/S107036321906032X. - DOI
    10. Frutos O. D., Quijano G., Aizpuru A., Muñoz R.. A State-of-the-Art Review on Nitrous Oxide Control from Waste Treatment and Industrial Sources. Biotechnol. Adv. 2018;36:1025–1037. doi: 10.1016/j.biotechadv.2018.03.004. - DOI - PubMed
    11. Nirisen Ø., Waller D., Brackenbury D. M.. The Development of N2O Abatement Catalyst: from Laboratory Scale to Plant Testing. Top. Catal. 2019;62:1113–1125. doi: 10.1007/s11244-018-1076-1. - DOI
    12. Martinez J. L., Schneider J. E., Anferov S. W., Anderson J. S.. Electrochemical Reduction of N2O with a Molecular Copper Catalyst. ACS Catal. 2023;13:12673–12680. doi: 10.1021/acscatal.3c02658. - DOI - PMC - PubMed
    13. Stanley J. S., Wang X. S., Yang J. Y.. Selective Electrocatalytic Reduction of Nitrous Oxide to Dinitrogen with an Iron Porphyrin Complex. ACS Catal. 2023;13:12617–12622. doi: 10.1021/acscatal.3c02707. - DOI
    14. Deeba R., Chardon-Noblat S., Costentin C.. Homogeneous Molecular Catalysis of the Electrochemical Reduction of N2O to N2: Redox vs. Chemical Catalysis. Chem. Sci. 2021;12:12726–12732. doi: 10.1039/D1SC03044B. - DOI - PMC - PubMed
    15. Piper S. E. H., Casadevall C., Reisner E., Clarke T. A., Jeuken L. J. C., Gates A. J., Butt J. N.. Photocatalytic Removal of the Greenhouse Gas Nitrous Oxide by Liposomal Microreactors. Angew. Chem. Int. Ed. 2022;61:e202210572. doi: 10.1002/anie.202210572. - DOI - PMC - PubMed
    16. Zhuang Z., Guan B., Chen J., Zheng C., Zhou J., Su T., Chen Y., Zhu C., Hu X., Zhao S., Guo J., Dang H., Zhang Y., Yuan Y., Yi C., Xu C., Xu B., Zeng W., Li Y., Shi K., He Y., Wei Z., Huang Z.. Review of Nitrous Oxide Direct Catalytic Decomposition and Selective Catalytic Reduction Catalysts. Chem. Eng. J. 2024;486:150374. doi: 10.1016/j.cej.2024.150374. - DOI
    17. Wu D., Chen K., Lv P., Ma Z., Chu K., Ma D.. Direct Eight-Electron N2O Electroreduction to NH3 Enabled by an Fe Double-Atom Catalyst. Nano Lett. 2024;24:8502–8509. doi: 10.1021/acs.nanolett.4c00576. - DOI - PubMed
    18. Anthore-Dalion L., Nicolas E., Cantat T.. Catalytic Metal-Free Deoxygenation of Nitrous Oxide with Disilanes. ACS Catal. 2019;9:11563–11567. doi: 10.1021/acscatal.9b04434. - DOI
    1. Kumar A., Gao C.. Homogeneous (De)­hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem. 2021;13:1105–1134. doi: 10.1002/cctc.202001404. - DOI
    2. Keijer T., Bakker V., Slootweg J. C.. Circular Chemistry to Enable a Circular Economy. Nat. Chem. 2019;11:190–195. doi: 10.1038/s41557-019-0226-9. - DOI - PubMed
    3. Genoux A., Severin K.. Nitrous Oxide as Diazo Transfer Reagent. Chem. Sci. 2024;15:13605–13617. doi: 10.1039/D4SC04530K. - DOI - PMC - PubMed
    4. Severin K.. Synthetic Chemistry with Nitrous Oxide. Chem. Soc. Rev. 2015;44:6375–6386. doi: 10.1039/C5CS00339C. - DOI - PubMed
    5. Severin K.. Homogeneous Catalysis with Nitrous Oxide. Trends Chem. 2023;5:574–576. doi: 10.1016/j.trechm.2022.12.008. - DOI

LinkOut - more resources