Early prediction of non-invasive ventilation outcome using the TabPFN machine learning model: a multi-centre validation study
- PMID: 40637771
- DOI: 10.1007/s00134-025-08025-6
Early prediction of non-invasive ventilation outcome using the TabPFN machine learning model: a multi-centre validation study
Conflict of interest statement
Declarations. Conflicts of interest: All authors declare that they have no competing interests.
References
-
- Ferreyro BL, Angriman F, Munshi L, Del Sorbo L, Ferguson ND, Rochwerg B, Ryu MJ, Saskin R, Wunsch H, da Costa BR, Scales DC (2020) Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: a systematic review and meta-analysis. JAMA 324(1):57–67
-
- Bellani G, Laffey JG, Pham T, Madotto F, Fan E, Brochard L, Esteban A, Gattinoni L, Bumbasirevic V, Piquilloud L, van Haren F, Larsson A, McAuley DF, Bauer PR, Arabi YM, Ranieri M, Antonelli M, Rubenfeld GD, Thompson BT, Wrigge H, Slutsky AS, Pesenti A (2017) Noninvasive ventilation of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study. Am J Respir Crit Care Med 195(1):67–77
-
- Yarnell CJ, Johnson A, Dam T, Jonkman A, Liu K, Wunsch H, Brochard L, Celi LA, De Grooth HJ, Elbers P, Mehta S, Munshi L, Fowler RA, Sung L, Tomlinson G (2023) Do thresholds for invasive ventilation in hypoxemic respiratory failure exist? A cohort study. Am J Respir Crit Care Med 207(3):271–282
-
- Hollmann N, Müller S, Purucker L, Krishnakumar A, Körfer M, Hoo SB, Schirrmeister RT, Hutter F (2025) Accurate predictions on small data with a tabular foundation model. Nature 637(8045):319–326
-
- RENOVATE Investigators and the BRICNet Authors (2025) High-flow nasal oxygen vs noninvasive ventilation in patients with acute respiratory failure: the RENOVATE randomized clinical trial. JAMA 333(10):875–890