The correlation of liquid biopsy genomic data to radiomics in colon, pancreatic, lung and prostatic cancer patients
- PMID: 40645032
- DOI: 10.1016/j.ejca.2025.115609
The correlation of liquid biopsy genomic data to radiomics in colon, pancreatic, lung and prostatic cancer patients
Abstract
Introduction: With the advances in artificial intelligence (AI) and precision medicine, radiomics has emerged as a promising tool in the field of oncology. Radiogenomics integrates radiomics with genomic data, potentially offering a non-invasive method for identifying biomarkers relevant to cancer therapy. Liquid biopsy (LB) has further revolutionized cancer diagnostics by detecting circulating tumor DNA (ctDNA), enabling real-time molecular profiling. This study explores the integration of radiomics and LB to predict genomic alterations in solid tumors, including lung, colon, pancreatic, and prostate cancers.
Methods: A retrospective study was conducted on 418 patients from the STING trial (NCT04932525), all of whom underwent both LB and CT imaging. Predictive models were developed using an XGBoost logistic classifier, with statistical analysis performed to compare tumor volumes, lesion counts, and affected organs across molecular subtypes. Performance was evaluated using area under the curve (AUC) values and cross-validation techniques.
Results: Radiomic models demonstrated moderate-to-good performance in predicting genomic alterations. KRAS mutations were best identified in pancreatic cancer (AUC=0.97), while moderate discrimination was noted in lung (AUC=0.66) and colon cancer (AUC=0.64). EGFR mutations in lung cancer were detected with an AUC of 0.74, while BRAF mutations showed good discriminatory ability in both lung (AUC=0.79) and colon cancer (AUC=0.76). In the radiomics predictive model, AR mutations in prostate cancer showed limited discrimination (AUC = 0.63).
Conclusion: This study highlights the feasibility of integrating radiomics and LB for non-invasive genomic profiling in solid tumors, demonstrating significant potential in patient stratification and personalized oncology care. While promising, further prospective validation is required to enhance the generalizability of these models.
Keywords: CT scan; Cancer; Cancer - Mutations; Colon - Pancreas; Liquid biopsy; Lung – Prostate; Prediction; Radiomics.
Copyright © 2025 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
