Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 12:220345251347508.
doi: 10.1177/00220345251347508. Online ahead of print.

Deep Learning Photo Processing for Periodontitis Screening

Affiliations

Deep Learning Photo Processing for Periodontitis Screening

L-R Tao et al. J Dent Res. .

Abstract

Late detection of periodontitis has significant health implications. Screening via oral images may serve as an accessible nonclinical method. This study tested the hypothesis that diagnostic information in oral images can aid a deep learning algorithm in detecting periodontitis cases. This cross-sectional diagnostic accuracy study involved consecutive subjects seeking care at Shanghai Ninth People's Hospital, China, and their oral digital twins. The index test was a global activation pooling-based multi-instance deep learning model (DLM) based on pretrained ResNet50, developed and tested in 2 independent samples to identify stage II to IV periodontitis. The model did not use annotated landmarks on images but labeled cases based on a reference consisting of a periodontal clinical examination. The external testing dataset included oral images of subjects diagnosed based on panoramic radiographs. The performance was assessed by the area under the receiver-operating curve (AUROC), sensitivity, and specificity. A total of 387 subjects participated in the internal development and testing. The external testing dataset consisted of 183 subjects. DLM processing of a single frontal view oral image accurately identified stage II to IV periodontitis in the internal (AUROC = 0.93, 95% confidence interval [CI] 0.85-0.98) and external dataset (AUROC = 0.93, 95% CI 0.88-0.96). High consistency was observed between the regions of interest identified in the class activation heat maps and a periodontist (internal test: 99.66%; external test: 99.45%). DLM showed better sensitivity and specificity than clinicians with different skill levels. The multimodal combination of images and other nonclinical parameters led to only marginal improvements in accuracy. DLM processing of oral images shows potential for periodontal health screening. Artificial intelligence focuses on the important image areas but seems to capture features that are not apparent to clinicians. More development and validation are needed to introduce this approach as a screening tool to multiple populations worldwide.

Keywords: artificial intelligence; diagnosis; digital image processing; mass screening; periodontal disease; photograph.

PubMed Disclaimer

LinkOut - more resources