Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul 1;136(7):lxaf168.
doi: 10.1093/jambio/lxaf168.

The connections of climate change with microbial ecology and their consequences for ecosystem, human, and plant health

Affiliations
Review

The connections of climate change with microbial ecology and their consequences for ecosystem, human, and plant health

Ludivine Guigard et al. J Appl Microbiol. .

Abstract

The climate crisis presents an urgent challenge for Earth's living creatures and the habitats in which they have been adapted to thrive. Climate-related stress presents risks to microorganisms, the stability of the functions they provide, and their maintenance of beneficial interactions with their hosts and ecosystems. Microbes move across the continuum of anthropogenic influence on Earth's ecosystems, from pristine to human-managed to fully urbanized environments. Because microbial feedback within and across this continuum exists at multiple, connected scales from molecules to ecosystem-level processes, predicting microbial responses to climate stress and their potentially wide-ranging consequences remains difficult. Here, we discuss the broad implications of microbial and microbiome responses to climate change as they interface with human, plant, and ecosystem health. For each section on human, plant and ecosystem health, we briefly discuss the state of knowledge for each and follow with proposed future research, including some directions that are promising but require more work to evaluate. We end by considering overarching microbial ecology research needs across these systems and microbial solutions under investigation as possible climate-resilient interventions to maintain human, plant, and ecosystem health. This work draws on diverse expertise to identify broad research directions across typically separated disciplines and builds a holistic framework for considering their interrelationships.

Keywords: One Health; Sustainable Development Goals; agriculture; antibiotic resistance; biogeochemical cycles; greenhouse gas; opportunistic pathogens; phytopathogen; plant microbiota; soil microbiota; vector-borne pathogens.

PubMed Disclaimer