Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 11:noaf162.
doi: 10.1093/neuonc/noaf162. Online ahead of print.

Lipid nanoparticle formulation for gene editing and RNA-based therapies for glioblastoma

Affiliations

Lipid nanoparticle formulation for gene editing and RNA-based therapies for glioblastoma

Yanhong Zhang et al. Neuro Oncol. .

Abstract

Background: Glioblastoma (GBM), one of the deadliest cancers, resists current therapies, with drug development hindered by its high heterogeneity. However, GBM consistently relies on microRNA-10b (miR-10b), a key driver of glioma growth and a promising therapeutic target. miR-10b gene editing represents a potential treatment, but effective delivery strategies for gene editing systems in GBM remain unexplored.

Methods: We developed lipid nanoparticles (LNPs) encapsulating Cas9 mRNA and a miR-10b-targeting sgRNA (termed miRTEN). miRTEN was tested in glioma stem cells (GSCs) and orthotopic GBM models to assess therapeutic efficacy, immune responses, and safety.

Results: Intracerebroventricular (ICV) injections of miRTEN enabled broad and durable Cas9 mRNA expression and miR-10b gene editing in tumor core and invasive areas across diverse GBM models. miRTEN significantly suppressed tumor growth, reduced GSC proliferation and viability, with therapeutic outcomes correlating with dose-dependent miR-10b suppression. Combining miRTEN with temozolomide (TMZ) further enhanced tumor suppression, overcoming TMZ resistance and improving survival. In immunocompetent models, miRTEN activated anti-tumor immune responses, increased cytotoxic CD8+ T cells infiltration, and promoted durable immune memory, enabling tumor rejection upon rechallenge. Safety assessments demonstrated that miRTEN selectively targets GBM cells, sparing normal brain tissues and causing no significant off-target toxicity.

Conclusion: As in vivo CRISPR-based drugs advance toward clinical applications, our findings demonstrate the potential of LNPs-mediated CRISPR-Cas9 systems for targeted miR-10b editing and, more generally, gene editing and RNA therapies for GBM. miRTEN monotherapy, as well as its combination with standard care, offers a promising, safe, and effective approach to improving outcomes in GBM.

Keywords: CRISPR-Cas9; Glioblastoma; gene editing; lipid nanoparticles; microRNA-10b.

PubMed Disclaimer