Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep;645(8081):620-625.
doi: 10.1038/s41586-025-09367-3. Epub 2025 Jul 14.

Experimental demonstration of logical magic state distillation

Pedro Sales Rodriguez #  1 John M Robinson #  1 Paul Niklas Jepsen #  1 Zhiyang He  1   2 Casey Duckering  1 Chen Zhao  1 Kai-Hsin Wu  1 Joseph Campo  1 Kevin Bagnall  1 Minho Kwon  1 Thomas Karolyshyn  1 Phillip Weinberg  1 Madelyn Cain  3 Simon J Evered  3 Alexandra A Geim  3 Marcin Kalinowski  3 Sophie H Li  3 Tom Manovitz  3 Jesse Amato-Grill  1 James I Basham  1 Liane Bernstein  1 Boris Braverman  1 Alexei Bylinskii  1 Adam Choukri  1 Robert J DeAngelo  1 Fang Fang  1 Connor Fieweger  1 Paige Frederick  1 David Haines  1 Majd Hamdan  1 Julian Hammett  1 Ning Hsu  1 Ming-Guang Hu  1 Florian Huber  1 Ningyuan Jia  1 Dhruv Kedar  1 Milan Kornjača  1 Fangli Liu  1 John Long  1 Jonathan Lopatin  1 Pedro L S Lopes  1 Xiu-Zhe Luo  1 Tommaso Macrì  1 Ognjen Marković  1 Luis A Martínez-Martínez  1 Xianmei Meng  1 Stefan Ostermann  1 Evgeny Ostroumov  1 David Paquette  1 Zexuan Qiang  1 Vadim Shofman  1 Anshuman Singh  1 Manuj Singh  1 Nandan Sinha  1 Henry Thoreen  1 Noel Wan  1 Yiping Wang  1 Daniel Waxman-Lenz  1 Tak Wong  1 Jonathan Wurtz  1 Andrii Zhdanov  1 Laurent Zheng  1 Markus Greiner  3 Alexander Keesling  1 Nathan Gemelke  1 Vladan Vuletić  4 Takuya Kitagawa  1 Sheng-Tao Wang  1 Dolev Bluvstein  3 Mikhail D Lukin  3 Alexander Lukin  1 Hengyun Zhou  5 Sergio H Cantú  6
Affiliations

Experimental demonstration of logical magic state distillation

Pedro Sales Rodriguez et al. Nature. 2025 Sep.

Abstract

Realizing universal fault-tolerant quantum computation is a key goal in quantum information science1-4. By encoding quantum information into logical qubits using quantum error correcting codes, physical errors can be detected and corrected, enabling a substantial reduction in logical error rates5-11. However, the set of logical operations that can be easily implemented on these encoded qubits is often constrained1,12, necessitating the use of special resource states known as 'magic states'13 to implement universal, classically hard circuits14. A key method to prepare high-fidelity magic states is to perform 'distillation', creating them from multiple lower-fidelity inputs13,15. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach uses a dynamically reconfigurable architecture8,16 to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d = 3 and d = 5 colour codes, observing improvements in the logical fidelity of the output magic states compared with the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation and represent an important step towards large-scale logical quantum processors.

PubMed Disclaimer

Conflict of interest statement

Competing interests: M.G., V.V. and M.D.L. are co-founders and shareholders of QuEra Computing. Authors affiliated with QuEra Computing are employees or interns at QuEra Computing at the time of their contributions.

References

    1. Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th IEEE Symposium on the Foundations of Computer Science 56–65 (IEEE, 1996).
    1. Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008). - DOI
    1. Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint at https://doi.org/10.48550/arXiv.0904.2557 (2010).
    1. Campbell, E. T., Terhal, B. M., & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017). - PubMed - DOI
    1. Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025). - DOI

LinkOut - more resources