Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep:111:102835.
doi: 10.1016/j.arr.2025.102835. Epub 2025 Jul 12.

Mapping the immune-genetic architecture of aging: A single-cell causal framework for biomarker discovery and therapeutic targeting

Affiliations

Mapping the immune-genetic architecture of aging: A single-cell causal framework for biomarker discovery and therapeutic targeting

Yanggang Hong et al. Ageing Res Rev. 2025 Sep.

Abstract

Aging is a complex biological process driven by genetic and immune-mediated mechanisms, yet the causal roles of immune-cell-specific gene regulation remain unclear. In this study, we integrate single-cell expression quantitative trait loci (sc-eQTL) data with Mendelian randomization (MR) and colocalization analyses to identify immune-mediated regulatory mechanisms and therapeutic targets for aging. Using data from 14 immune cell types, we systematically evaluated 8733 eGenes for causal effects on telomere length (TL), facial aging (FA), and frailty index (FI). We identified 27 immune-cell-specific eGenes with significant causal associations and strong colocalization evidence (posterior probability for a shared causal variant, PP.H4 > 50 %). Key regulators include FUBP1, TUFM, ATIC, and SLC22A5, with distinct effects across cell types and aging traits. Phenome-wide association studies (PheWAS) demonstrated minimal off-target associations for most genes, supporting their safety as therapeutic targets. Drug repurposing analysis revealed several approved or investigational compounds, such as Irofulven, zinc-based agents, and acetylcarnitine, with potential for aging-related interventions. Our findings provide new insights into the immune-genetic architecture of aging and establish a scalable framework for identifying cell-type-specific causal genes and repurposable drug targets. This approach enhances precision medicine strategies aimed at promoting healthy aging and delaying age-related decline.

Keywords: Aging; Causal mechanisms; Drug target prioritization; Immune cell eQTL; Mendelian randomization.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources