Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Nov;59(5):1394-401.
doi: 10.1152/jappl.1985.59.5.1394.

Thermoregulatory and blood responses during exercise at graded hypohydration levels

Comparative Study

Thermoregulatory and blood responses during exercise at graded hypohydration levels

M N Sawka et al. J Appl Physiol (1985). 1985 Nov.

Abstract

We studied the effects of graded hypohydration levels on thermoregulatory and blood responses during exercise in the heat. Eight heat-acclimated male subjects attempted four heat-stress tests (HSTs). One HST was attempted during euhydration, and three HSTs were attempted while the subjects were hypohydrated by 3, 5, and 7% of their body weight. Hypohydration was achieved by an exercise-heat regimen on the day prior to each HST. After 30 min of rest in a 20 degrees C antechamber the HST consisted of a 140-min exposure (4 repeats of 10 min rest and 25 min treadmill walking) in a hot-dry (49 degrees C, 20% relative humidity) environment. The following observations were made: 1) a low-to-moderate hypohydration level primarily reduced plasma volume with little effect on plasma osmolality, whereas a more severe hypohydration level resulted in no further plasma volume reduction but a large increment in plasma osmolality; 2) core temperature and heart rate responses increased with severity of hypohydration; 3) sweating rate responses for a given rectal temperature were systematically decreased with severity of hypohydration; and 4) the reduction in sweating rate was more strongly associated with plasma hyperosmolality than hypovolemia. In conclusion, an individual's thermal strain increases linearly with the severity of hypohydration during exercise in the heat, and plasma hyperosmolality influences the reduction in sweating more profoundly than hypovolemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources