This is a preprint.
Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis
- PMID: 40667083
- PMCID: PMC12262482
- DOI: 10.1101/2025.06.16.657725
Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis
Update in
-
Image-Based Meta- and Mega-Analysis (IBMMA): A Unified Framework for Large-Scale, Multi-Site, Neuroimaging Data Analysis.Neuroimage. 2025 Oct 23:121554. doi: 10.1016/j.neuroimage.2025.121554. Online ahead of print. Neuroimage. 2025. PMID: 41138791
Abstract
The increasing scale and complexity of neuroimaging datasets aggregated from multiple study sites present substantial analytic challenges, as existing statistical analysis tools struggle to handle missing voxel-data, suffer from limited computational speed and inefficient memory allocation, and are restricted in the types of statistical designs they are able to model. We introduce Image-Based Meta- & Mega-Analysis (IBMMA), a novel software package implemented in R and Python that provides a unified framework for analyzing diverse neuroimaging features, efficiently handles large-scale datasets through parallel processing, offers flexible statistical modeling options, and properly manages missing voxel-data commonly encountered in multi-site studies. IBMMA produced stronger effect sizes and revealed findings in brain regions that traditional software overlooked due to missing voxel-data resulting in gaps in brain coverage. IBMMA has the potential to accelerate discoveries in neuroscience and enhance the clinical utility of neuroimaging findings.
Keywords: Big Data; Mega-analysis; Meta-analysis; Neuroimaging; PTSD; Resting-state fMRI.
Figures
References
-
- Esteban O., Markiewicz C. J., Blair R. W., Moodie C. A., Isik A. I., Erramuzpe A., Kent J. D., Goncalves M., DuPre E., Snyder M., Oya H., Ghosh S. S., Wright J., Durnez J., Poldrack R. A., & Gorgolewski K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116. 10.1038/s41592-018-0235-4 - DOI - PMC - PubMed
-
- Hall J. A., & Rosenthal R. (2018). Choosing between random effects models in meta-analysis: Units of analysis and the generalizability of obtained results. Social and Personality Psychology Compass, 12(10), e12414. 10.1111/spc3.12414 - DOI
Publication types
Grants and funding
- IK2 CX001680/CX/CSRD VA/United States
- R21 MH112956/MH/NIMH NIH HHS/United States
- R21 MH098198/MH/NIMH NIH HHS/United States
- R01 MH116147/MH/NIMH NIH HHS/United States
- R01 MH119227/MH/NIMH NIH HHS/United States
- R01 MH110483/MH/NIMH NIH HHS/United States
- T32 MH018931/MH/NIMH NIH HHS/United States
- R01 MH043454/MH/NIMH NIH HHS/United States
- R01 HD071982/HD/NICHD NIH HHS/United States
- K01 MH118467/MH/NIMH NIH HHS/United States
- IK2 RX000709/RX/RRD VA/United States
- P41 EB015922/EB/NIBIB NIH HHS/United States
- P30 HD003352/HD/NICHD NIH HHS/United States
- R56 MH071537/MH/NIMH NIH HHS/United States
- IK2 RX002922/RX/RRD VA/United States
- R21 MH098212/MH/NIMH NIH HHS/United States
- R01 MH113574/MH/NIMH NIH HHS/United States
- K12 HD085850/HD/NICHD NIH HHS/United States
- R01 MH071537/MH/NIMH NIH HHS/United States
- K01 MH118428/MH/NIMH NIH HHS/United States
- R01 MH105355/MH/NIMH NIH HHS/United States
- M01 RR000039/RR/NCRR NIH HHS/United States
- R01 MH111671/MH/NIMH NIH HHS/United States
- R01 MH106574/MH/NIMH NIH HHS/United States
- IK1 RX002325/RX/RRD VA/United States
- I01 RX000622/RX/RRD VA/United States
- U54 EB020403/EB/NIBIB NIH HHS/United States
- R01 MH117601/MH/NIMH NIH HHS/United States
- UL1 TR000454/TR/NCATS NIH HHS/United States
- R56 AG058854/AG/NIA NIH HHS/United States
- R01 AG022381/AG/NIA NIH HHS/United States
- R01 AG050595/AG/NIA NIH HHS/United States
- R01 AG059874/AG/NIA NIH HHS/United States
LinkOut - more resources
Full Text Sources