VHL Suppresses Angiogenesis Through HIF-1a-Mediated Ang/Tie2/AMPK/VEGF Signaling Pathway in Tie-2 Expressed Macrophages (TEMs)
- PMID: 40670868
- DOI: 10.1007/s10528-025-11175-3
VHL Suppresses Angiogenesis Through HIF-1a-Mediated Ang/Tie2/AMPK/VEGF Signaling Pathway in Tie-2 Expressed Macrophages (TEMs)
Abstract
The cartilage of the growth plate is crucial for the longitudinal growth of long bones but is highly susceptible to injury due to its avascular nature. Growth plate injuries frequently result in the formation of a bone bridge, leading to limb length discrepancies and angular deformities. Angiogenesis is a critical factor in the repair process, as new blood vessels deliver oxygen, nutrients, and cellular components essential for bone regeneration. Tie2-expressing macrophages (TEMs) play a pivotal role in promoting angiogenesis in tumors and remodeled tissues; however, their precise function and regulatory mechanisms in epiphyseal plate injury repair remain unclear. This study investigates the role of the VHL/HIF-1α/Tie2/AMPK/Autophagy axis in TEM-mediated angiogenesis. Our findings identify VHL as a key regulator of TEM-driven angiogenesis, where VHL overexpression suppresses, and VHL silencing enhances the pro-angiogenic potential of TEMs. Mechanistically, VHL downregulates HIF-1α, reducing Tie2 surface expression, which in turn modulates AMPK-mediated autophagy. This pathway influences VEGF secretion, thereby promoting endothelial cell proliferation, migration, survival, and tube formation. These findings uncover a novel regulatory mechanism governing TEM-mediated angiogenesis and offer insights into potential therapeutic strategies to enhance vascularization, improve growth plate injury repair, and mitigate long-term orthopedic complications.
Keywords: Autophagy; Clinical applications; Epiphyseal plate injury; Macrophages; VHL.
© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Conflict of interest statement
Declarations. Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
Exploring the pro-angiogenic potential of Chinese herbal medicines: a comprehensive insight into mechanisms.J Ethnopharmacol. 2025 Jul 24;351:120132. doi: 10.1016/j.jep.2025.120132. Epub 2025 Jun 11. J Ethnopharmacol. 2025. PMID: 40513922 Review.
-
Hypoxia-inducible factor 1alpha and vascular endothelial growth factor in Glioblastoma Multiforme: a systematic review going beyond pathologic implications.Oncol Res. 2024 Jul 17;32(8):1239-1256. doi: 10.32604/or.2024.052130. eCollection 2024. Oncol Res. 2024. PMID: 39055895 Free PMC article.
-
Management of urinary stones by experts in stone disease (ESD 2025).Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
-
miR-210 Regulates Autophagy Through the AMPK/mTOR Signaling Pathway, Reduces Neuronal Cell Death and Inflammatory Responses, and Enhances Functional Recovery Following Cerebral Hemorrhage in Mice.Neurochem Res. 2025 Jun 5;50(3):180. doi: 10.1007/s11064-025-04434-7. Neurochem Res. 2025. PMID: 40471451 Free PMC article.
-
Salvianolic Acid B Promotes Placental and Decidual Angiogenesis by Restoring the Normal Expression of Hypoxia-Inducible Factor-1α/Vascular Endothelial Growth Factor in Mice With Recurrent Pregnancy Loss.Am J Reprod Immunol. 2025 Jul;94(1):e70105. doi: 10.1111/aji.70105. Am J Reprod Immunol. 2025. PMID: 40637198
References
-
- Angelo LS, Kurzrock R (2007) Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res 13:2825–2830 - PubMed
-
- Capobianco A, Monno A, Cottone L, Venneri MA, Biziato D, Di Puppo F, Ferrari S, De Palma M, Manfredi AA, Rovere-Querini P (2011) Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. Am J Pathol 179:2651–2659 - PubMed - PMC
-
- Chandra A, Rick J, Yagnik G, Aghi MK (2020) Autophagy as a mechanism for anti-angiogenic therapy resistance. Semin Cancer Biol 66:75–88 - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous