Asymmetric Micro-Evolutionary Responses in a Warming World: Heat-Driven Adaptation Enhances Metal Tolerance in a Planktonic Rotifer, but Not Vice Versa
- PMID: 40671644
- PMCID: PMC12268377
- DOI: 10.1111/gcb.70347
Asymmetric Micro-Evolutionary Responses in a Warming World: Heat-Driven Adaptation Enhances Metal Tolerance in a Planktonic Rotifer, but Not Vice Versa
Abstract
The resilience of natural populations in the face of global environmental change is determined by their ability to adapt to multiple, often interacting, stressors. Microevolutionary adaptation to one stressor can either enhance or reduce tolerance to other stressors. In the context of climate change, it is crucial to understand the effect of warming on the tolerance of organisms to additional environmental challenges. Conversely, adaptation to localized stressors, such as pollution, may also affect an organism's capacity to withstand climate change. Here, we investigate how prior adaptation to either high temperature or copper (Cu) contamination influences subsequent tolerance to the other stressor in populations of the freshwater zooplanktonic rotifer Brachionus calyciflorus (Pallas, 1766). Using an experimental evolution approach, we subjected populations to either gradually increasing Cu levels, elevated temperature, or control conditions over multiple generations. Subsequently, we conducted a common garden experiment to assess the effect of selection history on population performance. We found that heat-adapted populations exhibited increased tolerance to Cu, whereas Cu-adapted populations showed no enhanced tolerance to high temperatures. This form of "asymmetric cross-adaptation" is likely driven by selection for generalized stress responses associated with heat adaptation, while Cu adaptation selected for more specialized detoxification mechanisms with limited cross-protection. These findings suggest that the legacy of warming may enhance population tolerance to other stressors, whereas the benefits of adaptation to local pollution may be more constrained. Our study highlights the need to assess the generality of such patterns across taxa and stressor combinations, as this knowledge could inform environmental management strategies in multi-stressor contexts.
Keywords: climate change; copper toxicity; cross‐adaptation; cross‐tolerance; heat stress; micro‐evolutionary adaptation; pollution.
Global Change Biology© 2025 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures



Similar articles
-
Adapting to an increasingly stressful environment: Experimental evidence for 'micro-evolutionary priming'.J Anim Ecol. 2025 May;94(5):863-873. doi: 10.1111/1365-2656.70012. Epub 2025 Feb 19. J Anim Ecol. 2025. PMID: 39972545 Free PMC article.
-
Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults.Cochrane Database Syst Rev. 2016 Apr 21;4(4):CD009016. doi: 10.1002/14651858.CD009016.pub2. Cochrane Database Syst Rev. 2016. PMID: 27098439 Free PMC article.
-
Sexual Harassment and Prevention Training.2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.Autism Adulthood. 2024 Sep 16;6(3):362-373. doi: 10.1089/aut.2023.0032. eCollection 2024 Sep. Autism Adulthood. 2024. PMID: 39371355
References
-
- Bates, D. , Mächler M., Bolker B., and Walker S.. 2015. “Fitting Linear Mixed‐Effects Models Using lme4.” Journal of Statistical Software 67: 1–48. 10.18637/jss.v067.i01. - DOI
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources