[Spatiotemporal distribution of etiologically positive pulmonary tuberculosis in Shaanxi Province, 2015-2023]
- PMID: 40677181
- DOI: 10.3760/cma.j.cn112338-20250126-00064
[Spatiotemporal distribution of etiologically positive pulmonary tuberculosis in Shaanxi Province, 2015-2023]
Abstract
Objective: To understand the spatiotemporal distribution of pulmonary tuberculosis (TB) in Shaanxi Province from 2015 to 2023, and provide reference for the prevention and control of pulmonary TB in Shaanxi. Methods: The registration data of etiologically positive pulmonary TB cases in Shaanxi from 2015 to 2023 were collected from the tuberculosis subsystem of Chinese Disease Control and Prevention Information System. Descriptive method was used to analyze the basic characteristics of the etiologically positive pulmonary TB cases. Linear trend χ2 test was used to analyze trends in registration rate and pathogen positive rate. Software SPSS 25.0 was used for statistical analysis. Software ArcGIS 10.8 was used for global spatial autocorrelation and hotspot analysis to explore spatial clustering of the etiologically positive pulmonary TB cases. Software SaTScan 10.0 was used for spatiotemporal scan statistics, and software ArcGIS 10.8 was used to visualize the spatiotemporal clustering. Results: A total of 64 148 cases of etiologically positive pulmonary TB were registered in Shaanxi from 2015 to 2023, with an average annual registration rate of 18.33/100 000. The registration rate and pathgen positive rate all showed upward trends from 2015 to 2023, and the differences were significant (the trend χ2=4 555.18 and 19 330.43, both P<0.001). Global spatial autocorrelation and hotspot analysis showed that the registration rate of etiologically positive pulmonary TB in Shaanxi from 2017 to 2023 showed a spatial clustering. The hotspots were mainly in Zhenba and Xixiang counties of Hanzhong, six counties (districts) of Ankang, and Yanchuan and Yanchang counties of Yan'an. The coldspots were mainly in parts of the Guanzhong area, including Baoji, Xi'an, and Xianyang. A total of 4 spatiotemporal clustering areas were explored by spatiotemporal scanning analysis (all P<0.001), in which the first-level clustering areas covered 17 counties (districts), mainly Zhenping, Ziyang, Zhenba, in southern Shaanxi from 2019 to 2022, the second-level clustering areas covered 6 counties (districts), mainly Yanchuan, Yanchang, Qingjian, in northern Shaanxi from 2018 to 2021, the third-level clustering areas covered 14 counties (districts), mainly Yanta, Chang'an, Jingyang, in Guanzhong area from 2018 to 2019, and the fourth-level clustering areas covered 10 counties (districts) from 2019 to 2021. Conclusions: The registration rate of labortory confirmed pulmonary TB cases in Shaanxi showed an upward trend, with obvious differences in spatiotemporal clustering distribution. The clustering areas were mainly in southern Shaanxi, such as Zhenba, Zhenping, Hanbin, Langao, Pingli, Xunyang, Ziyang counties, and northern Shaanxi, such as Yanchuan and Yanchang counties, as well as in capital city, Xi'an and the adjacent Guanzhong area. It is necessary to develope targeted measures according to local conditions for the improvement of pulmonary TB prevention and control strategies in Shaanxi.
目的: 了解2015-2023年陕西省病原学阳性肺结核时空分布特征,为陕西省结核病防控提供参考依据。 方法: 资料来源于中国疾病预防控制信息系统结核病子系统2015-2023年陕西省病原学阳性肺结核患者登记数据,描述性分析病原学阳性肺结核患者基本特征,对登记率及病原学阳性率的变化趋势进行线性趋势χ2检验。应用SPSS 25.0软件进行统计学分析。应用ArcGIS 10.8软件对各年登记的病原学阳性肺结核数据进行全局空间自相关、热点分析,探索其空间聚集性。应用SaTScan 10.0软件分析时空聚集性,应用ArcGIS 10.8软件进行时空扫描可视化作图。 结果: 2015-2023年陕西省共登记病原学阳性肺结核64 148例,年均登记率为18.33/10万,2015-2023年的病原学阳性登记率和阳性率整体均呈上升趋势,差异有统计学意义(趋势χ2值分别为4 555.18、19 330.43,均P<0.001)。全局空间自相关分析及热点分析显示,2017-2023年陕西省病原学阳性肺结核登记率呈空间聚集性分布,热点区域主要分布在汉中市的镇巴县、西乡县,安康市6个县(区、市)及延安市的延川县、延长县,冷点区域主要分布在宝鸡市、西安市、咸阳市等部分关中地区。时空扫描共探测到4个时空聚集区域(均P<0.001),其中一级聚集区覆盖17个县(区、市),主要覆盖镇坪县、紫阳县、镇巴县等陕南地区,聚集时间为2019-2022年;二级聚集区覆盖6个县(区、市),主要覆盖延川县、延长县、清涧县等陕北地区,聚集时间为2018-2021年;三级聚集区覆盖14个县(区),主要覆盖雁塔区、长安区、泾阳县等关中地区,聚集时间为2018-2019年;四级聚集区覆盖10个县(区、市),聚集时间为2019-2021年。 结论: 陕西省病原学阳性肺结核患者登记率整体呈上升趋势,存在明显的时空聚集性及地区上的分布差异,聚集区主要分布在镇巴县、镇坪县、汉滨区、岚皋县、平利县、旬阳市、紫阳县等陕南地区和延川县、延长县等陕北地区,同时也分布在人口密集的西安市主城区及邻近关中地区,建议结合陕西省各县(区、市)的实际情况,分类施策,不断完善防治体系和防控策略,制定有针对性的肺结核防控措施。.
Similar articles
-
Spatiotemporal distribution of newly diagnosed echinococcosis patients in Sichuan Province, China, 2013-2024.PLoS Negl Trop Dis. 2025 Aug 4;19(8):e0013358. doi: 10.1371/journal.pntd.0013358. eCollection 2025 Aug. PLoS Negl Trop Dis. 2025. PMID: 40758727 Free PMC article.
-
[Feasibility of the spatiotemporal filtering model for analyzing the spatiotemporal distribution of reported schistosomiasis cases].Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2025 Jun 24;37(3):232-238. doi: 10.16250/j.32.1915.2024270. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2025. PMID: 40730520 Chinese.
-
Prevalence and Spatial distribution characteristics of human echinococcosis in Ningxia Hui Autonomous Region, 2011-2023.BMC Public Health. 2025 Jul 30;25(1):2598. doi: 10.1186/s12889-025-23740-x. BMC Public Health. 2025. PMID: 40739204 Free PMC article.
-
Epidemiological changes in tuberculosis and genotyping characteristics of Mycobacterium Tuberculosis in Ningxia, China.Front Microbiol. 2025 Jun 4;16:1582163. doi: 10.3389/fmicb.2025.1582163. eCollection 2025. Front Microbiol. 2025. PMID: 40535020 Free PMC article. Review.
-
Molecular clustering of patients with diabetes and pulmonary tuberculosis: A systematic review and meta-analysis.PLoS One. 2017 Sep 13;12(9):e0184675. doi: 10.1371/journal.pone.0184675. eCollection 2017. PLoS One. 2017. PMID: 28902922 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources