Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul 16:S1742-7061(25)00533-1.
doi: 10.1016/j.actbio.2025.07.036. Online ahead of print.

Biomaterial multiscale geometry for regenerative immunoengineering of bone tissue

Affiliations
Free article
Review

Biomaterial multiscale geometry for regenerative immunoengineering of bone tissue

Indra Mooij et al. Acta Biomater. .
Free article

Abstract

Osteoimmunomodulation (OIM) is emerging as a key biofunctionality of orthopedic implants. Biomaterial surface geometries can modulate the interactions between immune cells and osteoprogenitors at the bone-implant interface, positively affecting osteogenic differentiation and implant osseointegration. This review highlights the recent advancements in geometry-induced OIM (G-OIM) across multiple length scales (nano to mesoscale, including multiscale topographies and 3D scaffolds), identifying relations between specific geometries and subsequent mechanisms of OIM, as provided by the coculture model used. Our review reveals surface geometries with OIM potential at each length scale. These effects can be mediated by both M1 and M2 macrophages, wherein the pathway depends on the shape and length scale of the geometrical cues provided (e.g., integrin-mediated mechanotransduction for nanoscale topographies and macrophage contact inhibition for micropatterns). Most studies assess G-OIM predominantly based on geometry-induced macrophage polarization and its paracrine effect on osteoprogenitors. However, few studies utilizing direct coculture reveal the key role of the direct interplay between macrophages, osteoprogenitors, and biomaterial for OIM. The novel field of G-OIM is advancing at a high pace. It could benefit from improved, clinically relevant coculture models involving human-derived cells and technological developments in biomaterial design and fabrication. Such advances could establish (G-)OIM as a transformative approach for regenerative immunoengineering of orthopedic implants. STATEMENT OF SIGNIFICANCE: Osteoimmunomodulation, the ability of biomaterials to modulate the interactions between immune cells and skeletal cells to enhance osteogenesis, is increasingly recognized as a crucial biofunctionality for orthopedic biomaterials. Various biomaterial surface geometries can be used to target osteoimmune pathways. Given the complexity of these interactions, suitable coculture models are essential for studying the underlying cellular mechanisms. This review reveals the state-of-the-art results on geometry-induced osteoimmunomodulation. Not only does this review discuss approaches that have been taken thus far in terms of biomaterial geometry design at various length scales, but it also highlights the role of the coculture model in osteoimmunomodulation and the importance of advances in these in vitro models to improve the translation of research to clinical practice.

Keywords: Osteoimmunomodulation; bone regeneration; coculture; immunoengineering; surface geometry.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

  • Management of urinary stones by experts in stone disease (ESD 2025).
    Papatsoris A, Geavlete B, Radavoi GD, Alameedee M, Almusafer M, Ather MH, Budia A, Cumpanas AA, Kiremi MC, Dellis A, Elhowairis M, Galán-Llopis JA, Geavlete P, Guimerà Garcia J, Isern B, Jinga V, Lopez JM, Mainez JA, Mitsogiannis I, Mora Christian J, Moussa M, Multescu R, Oguz Acar Y, Petkova K, Piñero A, Popov E, Ramos Cebrian M, Rascu S, Siener R, Sountoulides P, Stamatelou K, Syed J, Trinchieri A. Papatsoris A, et al. Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
  • Short-Term Memory Impairment.
    Cascella M, Al Khalili Y. Cascella M, et al. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
  • The Black Book of Psychotropic Dosing and Monitoring.
    DeBattista C, Schatzberg AF. DeBattista C, et al. Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
  • Sexual Harassment and Prevention Training.
    Cedeno R, Bohlen J. Cedeno R, et al. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
  • Home treatment for mental health problems: a systematic review.
    Burns T, Knapp M, Catty J, Healey A, Henderson J, Watt H, Wright C. Burns T, et al. Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236

LinkOut - more resources