Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Oct;248(1):52-67.
doi: 10.1111/nph.70371. Epub 2025 Jul 21.

Microbial drivers of root plasticity

Affiliations
Review

Microbial drivers of root plasticity

Francisco Dini-Andreote et al. New Phytol. 2025 Oct.

Abstract

Soils are highly heterogeneous and dynamic systems, experiencing a constant flow of plant root exudates and moisture fluctuations that affect nutrient distribution, soil physicochemical properties, and microbial metabolisms. Plant roots adjust their development within the soil matrix (growth, branching, root angle, and anatomical features) by integrating local environmental conditions with physiologically informed signals. These physiological responses and the adaptability of roots are commonly defined as plasticity. Although genetically determined, root plasticity is modulated by local fluctuations in water and nutrient availability, environmental changes, and soil properties as well as by the root-associated microbiota. Roots and their vicinity are colonized by taxonomically and functionally diverse microbial species. Specific members within these communities can establish chemical communication with plants via root-derived signals, thereby tapping into the plant's hormonal and developmental network, influencing root plasticity. Given that most root traits associated with plasticity have been discovered under axenic conditions, our knowledge of the multiple potential mechanisms by which members of the root-associated microbiota modulate root plastic responses is still limited. In this review, we explore the recent progress in this field and identify specific avenues for future research toward advancing molecular and ecological understanding of microbial-mediated root plasticity in terrestrial systems.

Los suelos son sistemas altamente heterogéneos y dinámicos, que experimentan un flujo constante de exudados radiculares y fluctuaciones de humedad que afectan la distribución de nutrientes, las propiedades fisicoquímicas del suelo y el metabolismo microbiano. Cuando crecen en el suelo, las raíces de las plantas ajustan su desarrollo (por ejemplo, su crecimiento, ramificación, el ángulo con que emergen las raíces, sus características anatómicas) integrando las condiciones ambientales locales del suelo con señales fisiológicas en las raíces. Estas respuestas de adaptabilidad de las raíces a las condiciones cambiantes del suelo se definen comúnmente como plasticidad de las raíces. Aunque está genéticamente condicionada, la plasticidad radicular se modulada también por las fluctuaciones locales en la disponibilidad de agua y nutrientes en el suelo, los cambios ambientales y en las propiedades del suelo, así como por la microbiota asociada a las raíces. Las raíces y sus alrededores están colonizados por especies microbianas taxonómica y funcionalmente diversas. Miembros específicos de estas comunidades pueden establecer comunicación química con las plantas a través de señales derivadas de las raíces, aprovechando así la red hormonal y de desarrollo de la planta, lo que influye en la plasticidad radicular. Dado que la mayoría de los factores radiculares asociados con la plasticidad se han descubierto en condiciones de esterilidad, sin la presencia de microorganismos, nuestro conocimiento de los múltiples mecanismos potenciales mediante los cuales los miembros de la microbiota radicular modulan las plasticidad de las raíces es aún limitado. En esta revisión, exploramos los avances recientes en este campo e identificamos líneas específicas para futuras investigaciones que podrían promover la comprensión molecular y ecológica de la plasticidad radicular mediada por microbios en sistemas terrestres.

Solos são sistemas altamente heterogêneos e dinâmicos, experimentando um fluxo constante de exsudatos de raízes de plantas e flutuações de umidade que afetam a distribuição de nutrientes, as propriedades físico‐químicas do solo e o metabolismo microbiano. Raízes de plantas ajustam seu desenvolvimento dentro da matriz do solo (crescimento, ramificação, ângulo da raiz, características anatômicas) integrando condições ambientais locais com sinais fisiologicamente informados. Essas respostas fisiológicas e a adaptabilidade das raízes são comumente definidas como plasticidade. Embora geneticamente determinada, a plasticidade radicular é modulada por flutuações locais na disponibilidade de água e nutrientes, mudanças ambientais e propriedades do solo, bem como pela microbiota associada à raiz. Raízes e suas proximidades são colonizadas por espécies microbianas taxonomicamente e funcionalmente diversas. Membros específicos dentro dessas comunidades podem estabelecer comunicação química com plantas via sinais derivados da raiz, assim acessando a rede hormonal e de desenvolvimento da planta, influenciando a plasticidade radicular. Dado que a maioria das características radiculares associadas à plasticidade foi descoberta sob condições axênicas, nosso conhecimento dos múltiplos mecanismos potenciais pelos quais membros da microbiota associada à raiz modulam as respostas plásticas radiculares ainda é limitado. Nesta revisão, exploramos o progresso recente neste tema e identificamos áreas específicas para futuras pesquisas visando promover o avanço da compreensão molecular e ecológica da plasticidade radicular mediada por microrganismos em sistemas terrestres.

Keywords: microbiota controlling root development; plant nutrition; plant–microbiota interactions; root plasticity in soil; soil heterogenicity.

PubMed Disclaimer

Conflict of interest statement

None declared.

Figures

Fig. 1
Fig. 1
Schematic representation of plant–microbe interactions and microbial metabolism that influence root development and nutrient uptake. The figure displays the main identified mechanisms by which microbes interfere with the plant's endogenous developmental and nutrient uptake programs, resulting in changes in root development and plasticity, and plant nutritional status. MAMPs, microbe‐associated molecular patterns; NOD, Nod factors; PSB, phosphate‐solubilizing bacteria.
Fig. 2
Fig. 2
Overview of plant‐root phenotypic (architecture and anatomical) plasticity in soil. (a) Schematic representations of root plasticity in response to intermittent contact with water, leading to xerobranching (upper panel) and soil compaction (lower panel). (b) Confocal microscopy images displaying root cross‐sections highlighting differences in the anatomical arrangement between monocotyledonous and dicotyledonous species. The upper images (left to right) illustrate root anatomical cross‐sections of Zea mays (maize) and Oryza sativa (rice) (monocotyledonous species), and the lower images (left to right) display root anatomical cross‐sections of Solanum lycopersicum (tomato) and Vitis vinifera (grapevine) (dicotyledonous species). In both cases, the blunt‐ended arrows identify and name the different tissue layers and relevant anatomical features in the root. Side images in each inset panel are X‐ray computed tomography (CT) scan images of Z. mays (maize) (monocotyledonous, upper image) and V. vinifera (grapevine) (dicotyledonous, lower image). X‐ray CT enables the visualization of 3D structures based on differences in X‐ray attenuation (see Mairhofer et al., ; Piovesan et al., 2021).

References

    1. Aibara I, Miwa K. 2014. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient‐dependent dynamics of root architecture and transporter activity. Plant & Cell Physiology 55: 2027–2036. - PubMed
    1. Ali S, Tyagi A, Park S, Mir RA, Mushtaq M, Bhat B, Mahmoudi H, Bae H. 2022. Deciphering the plant microbiome to improve drought tolerance: mechanisms and perspectives. Environmental and Experimental Botany 201: 104933.
    1. Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. 2017. Root‐associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences, USA 114: E9403–E9412. - PMC - PubMed
    1. Andersen TG, Barberon M, Geldner N. 2015. Suberization – the second life of an endodermal cell. Current Opinion in Plant Biology 28: 9–15. - PubMed
    1. Arshad M, Frankenberger WT. 1991. Microbial production of plant hormones. In: Keister DL, Cregan PB, eds. Rhizosphere plant and growth. Dordrecht, the Netherlands: Springer, 327–334.

LinkOut - more resources