Analysis of aPTT predictors after unfractionated heparin administration in intensive care units using machine learning models
- PMID: 40690448
- PMCID: PMC12279130
- DOI: 10.1371/journal.pone.0328709
Analysis of aPTT predictors after unfractionated heparin administration in intensive care units using machine learning models
Abstract
Objectives: Predicting optimal coagulation control using heparin in intensive care units (ICUs) remains a significant challenge. This study aimed to develop a machine learning (ML) model to predict activated partial thromboplastin time (aPTT) in ICU patients receiving unfractionated heparin for anticoagulation and to identify key predictive factors.
Methods: Data were obtained from the Tokushukai Medical Database, covering six hospitals with ICUs in Japan, collected between 2018 and 2022. The study included 945 ICU patients who received unfractionated heparin. The dataset comprised both static and dynamic features, which were used to construct and train ML models. Models were developed to predict aPTT following initial and multiple heparin doses. Model performance was evaluated using the area under the receiver operating characteristic curve (ROC AUC), area under the precision-recall curve (PR AUC), precision, recall, F1 score, and accuracy. SHAP analysis was conducted to determine key predictive factors.
Results: The random forest model demonstrated the highest predictive performance, with ROC AUC values of 0.707 for the first infusion and 0.732 for multiple infusions. Corresponding PR AUC values were 0.539 and 0.551. Despite moderate overall predictive performance, the model exhibited high precision (0.585 for the first infusion and 0.589 for multiple infusions), indicating effectiveness in correctly identifying true positive cases. However, recall and F1 scores were lower, suggesting that some cases, particularly in sub-therapeutic and supra-therapeutic ranges, may have been missed. Incorporating time-series data, such as vital signs, provided only marginal improvements in performance.
Conclusions: ML models demonstrated moderate performance in predicting aPTT following heparin infusion in ICU patients, with the random forest model achieving the highest classification accuracy. Although the models effectively identified true positive cases, their overall predictive performance remained limited, necessitating further refinement. The inclusion of static and dynamic features did not significantly enhance model accuracy. Future studies should explore additional factors to improve predictive models for optimizing individualized anticoagulation management in ICUs.
Copyright: © 2025 Kamio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures




Similar articles
-
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.J Med Internet Res. 2025 May 26;27:e66733. doi: 10.2196/66733. J Med Internet Res. 2025. PMID: 40418571 Free PMC article.
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.Clin Orthop Relat Res. 2024 Dec 1;482(12):2193-2208. doi: 10.1097/CORR.0000000000003185. Epub 2024 Jul 23. Clin Orthop Relat Res. 2024. PMID: 39051924
-
Predicting in-hospital mortality in ICU patients with lymphoma using machine learning models.PLoS One. 2025 Aug 20;20(8):e0330197. doi: 10.1371/journal.pone.0330197. eCollection 2025. PLoS One. 2025. PMID: 40833967 Free PMC article.
-
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340. Health Technol Assess. 2006. PMID: 16959170
-
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.Health Technol Assess. 2008 Jun;12(28):iii-iv, ix-95. doi: 10.3310/hta12280. Health Technol Assess. 2008. PMID: 18547499
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials