Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep;31(9):3151-3168.
doi: 10.1038/s41591-025-03827-z. Epub 2025 Jul 21.

Polygenic prediction of body mass index and obesity through the life course and across ancestries

Roelof A J Smit  1   2   3   4 Kaitlin H Wade  5   6 Qin Hui  7   8 Joshua D Arias  9 Xianyong Yin  10   11 Malene R Christiansen  3 Loic Yengo  12 Michael H Preuss  1   4 Mariam Nakabuye  13 Ghislain Rocheleau  1   14   15 Sarah E Graham  16 Victoria L Buchanan  17 Geetha Chittoor  18 Marielisa Graff  19 Marta Guindo-Martínez  1   3 Yingchang Lu  20 Eirini Marouli  21   22 Saori Sakaue  23   24   25   26 Cassandra N Spracklen  27   28 Sailaja Vedantam  25   29 Emma P Wilson  27 Shyh-Huei Chen  30 Teresa Ferreira  31 Yingjie Ji  32 Tugce Karaderi  33   34 Kreete Lüll  35 Moara Machado  9 Deborah E Malden  31 Carolina Medina-Gomez  36 Amy Moore  37 Sina Rüeger  38   39 Masato Akiyama  23   40 Matthew A Allison  41 Marcus Alvarez  42 Mette K Andersen  3 Vivek Appadurai  43 Liubov Arbeeva  44 Eric Bartell  25   29   45 Seema Bhaskar  46 Lawrence F Bielak  47 Joshua C Bis  48 Sailalitha Bollepalli  49 Jette Bork-Jensen  3 Jonathan P Bradfield  50   51 Yuki Bradford  52 Caroline Brandl  53   54 Peter S Braund  55   56 Jennifer A Brody  48 Ulrich Broeckel  57 Kristoffer S Burgdorf  3   58   59 Brian E Cade  45   60 Qiuyin Cai  61 Silvia Camarda  62 Archie Campbell  63   64 Marisa Cañadas-Garre  65 Jin-Fang Chai  66 Alessandra Chesi  67   68 Seung Hoan Choi  69 Paraskevi Christofidou  70 Christian Couture  71 Gabriel Cuellar-Partida  72   73 Rebecca Danning  74 Frauke Degenhardt  75 Graciela E Delgado  76 Alessandro Delitala  77 Ayşe Demirkan  78   79 Xuan Deng  80 Alexander Dietl  53   81 Maria Dimitriou  82   83 Latchezar Dimitrov  84 Rajkumar Dorajoo  85   86 Fabian Eichelmann  87   88 Anders U Eliasen  25   89   90 Jorgen E Engmann  91 Michael R Erdos  92 Zammy Fairhurst-Hunter  31 Aliki-Eleni Farmaki  83 Jessica D Faul  93 Juan-Carlos Fernandez-Lopez  94 Lukas Forer  95 Mirjam Frank  96 Sandra Freitag-Wolf  97 Lars G Fritsche  11   98 Christian Fuchsberger  99 Tessel E Galesloot  100 Yan Gao  101 Frank Geller  102 Olga Giannakopoulou  21 Franco Giulianini  74 Anette P Gjesing  3 Anuj Goel  34   103 Scott D Gordon  104 Mathias Gorski  53 Jakob Grove  105   106   107 Xiuqing Guo  108 Stefan Gustafsson  109 Jeffrey Haessler  110 Thomas F Hansen  111   112   113 Aki S Havulinna  49   114 Simon J Haworth  5   115 Nancy Heard-Costa  116   117 Daiane Hemerich  1 Heather M Highland  19 George Hindy  25   118 Yuk-Lam Ho  119 Edith Hofer  120   121 Elizabeth Holliday  122 Katrin Horn  123   124 Whitney E Hornsby  16 Jouke-Jan Hottenga  125 Hongyan Huang  126 Jie Huang  127   128 Alicia Huerta-Chagoya  129   130 Shaofeng Huo  131 Mi Yeong Hwang  132 Chii-Min Hwu  133 Hiroyuki Iha  134 Daisuke D Ikeda  134 Masato Isono  135 Anne U Jackson  11 Iris E Jansen  136   137 Yunxuan Jiang  73 Ingegerd Johansson  138   139 Anna Jonsson  3 Torben Jørgensen  140   141 Ioanna P Kalafati  83   142 Masahiro Kanai  23   24   25 Stavroula Kanoni  21 Line L Kårhus  140 Anuradhani Kasturiratne  143 Tomohiro Katsuya  144 Takahisa Kawaguchi  145 Rachel L Kember  146   147 Katherine A Kentistou  148   149 Daeeun Kim  19   27 Han-Na Kim  150   151 Young Jin Kim  132 Marcus E Kleber  76   152 Maria J Knol  78 Azra Kurbasic  153 Marie Lauzon  108 Phuong Le  154   155 Rodney Lea  156 Jong-Young Lee  157 Wen-Jane Lee  158 Hampton L Leonard  159   160   161 Hengtong Li  162   163 Shengchao A Li  9   164 Xiaohui Li  108 Xiaoyin Li  165   166 Jingjing Liang  165 Honghuang Lin  167 Kuang Lin  31 Jun Liu  31   78 Xueping Liu  102 Ken Sin Lo  168 Jirong Long  61 Laura Lores-Motta  169 Jian'an Luan  170 Valeriya Lyssenko  171   172 Leo-Pekka Lyytikäinen  173   174   175 Anubha Mahajan  34 Md Zubbair Malik  176 Vasiliki Mamakou  177 Massimo Mangino  70   178 Ani Manichaikul  179 Jonathan Marten  180 Manuel Mattheisen  105   181   182 Aaron F McDaid  38   39 Quanshun Mei  80 Heike Meiselbach  183 Tori L Melendez  16 Yuri Milaneschi  184 Jason E Miller  185   186 Iona Y Millwood  31 Pashupati P Mishra  173   174 Ruth E Mitchell  5   6 Line T Møllehave  140 Nina Mononen  174   187 Sören Mucha  188   189 Matthias Munz  188 Juha Mykkänen  190   191 Masahiro Nakatochi  192 Giuseppe Giovanni Nardone  62 Christopher P Nelson  55   56 Maria Nethander  193   194 Chu Won Nho  195 Aneta A Nielsen  196 Ilja M Nolte  197 Suraj S Nongmaithem  46   198 Raymond Noordam  2   199 Ioanna Ntalla  21 Teresa Nutile  200 Anita Pandit  11 Marc Pauper  169 Eva R B Petersen  201 Liselotte V Petersen  106   202 Francesco Piluso  62 Ozren Polašek  203   204 Alaitz Poveda  153 Saiju Pyarajan  45   60   205 Laura M Raffield  27 Hiromi Rakugi  144 Julia Ramirez  21 Asif Rasheed  206 Dennis Raven  207 Nigel W Rayner  208 Carlos Riveros  209 Rebecca Rohde  19 Daniela Ruggiero  200 Sanni E Ruotsalainen  49 Kathleen A Ryan  210   211 Maria Sabater-Lleal  212   213   214 Aurora Santin  62   215 Richa Saxena  25   216 Markus Scholz  123   124 Botong Shen  217 Jingchunzi Shi  73 Jae Hun Shin  218 Carlo Sidore  219 Julia Sidorenko  12 Xueling Sim  66 Roderick C Slieker  220   221 Albert V Smith  222   223 Jennifer A Smith  47   93 Laura J Smyth  65 Lorraine Southam  208 Valgerdur Steinthorsdottir  224 Liang Sun  131 Fumihiko Takeuchi  135 Kent D Taylor  108 Bamidele O Tayo  225 Catherine Tcheandjieu  226   227 Natalie Terzikhan  78 Paola Tesolin  62   215 Alexander Teumer  228   229 Elizabeth Theusch  230 Deborah J Thompson  231 Gudmar Thorleifsson  224 Paul R H J Timmers  148   180 Stella Trompet  232   233 Constance Turman  126 Simona Vaccargiu  219 Sander W van der Laan  234   235 Peter J van der Most  197 Jan B van Klinken  236   237   238 Jessica van Setten  239 Shefali S Verma  67 Niek Verweij  240 Yogasudha Veturi  241 Carol A Wang  122   209 Chaolong Wang  242 Jun-Sing Wang  243 Lihua Wang  244 Ya Xing Wang  245 Zhe Wang  1   246 Helen R Warren  21   247 Wen Bin Wei  248 Wanqing Wen  61 William A Wheeler  249 Ananda R Wickremasinghe  143 Matthias Wielscher  250   251 Bendik S Winsvold  252   253 Andrew Wong  254 Matthias Wuttke  255   256 Rui Xia  257 Ken Yamamoto  258 Jingyun Yang  259   260 Jie Yao  108 Hannah Young  261 Noha A Yousri  262   263 Lei Yu  259   260 Lingyao Zeng  264 Weihua Zhang  265 Xinyuan Zhang  52 Jing-Hua Zhao  266   267 Wei Zhao  47   93 Wei Zhou  25   268   269   270 Martina E Zimmermann  53 Magdalena Zoledziewska  219 Leen M 't Hart  220   221   271   272 Linda S Adair  273   274 Hieab H H Adams  275   276 Carlos A Aguilar-Salinas  277   278 Fahd Al-Mulla  176 Donna K Arnett  279 Folkert W Asselbergs  280   281   282 Bjørn Olav Åsvold  283   284   285 John Attia  122 Bernhard Banas  286 Stefania Bandinelli  287 Lawrence J Beilin  288 David A Bennett  259   260 Tobias Bergler  286 Dwaipayan Bharadwaj  289 Ginevra Biino  290 Eric Boerwinkle  291 Carsten A Böger  286   292   293 Judith B Borja  294   295 Claude Bouchard  296 Donald W Bowden  84 Ivan Brandslund  201   297 Ben Brumpton  283   298 Julie E Buring  45   74 Mark J Caulfield  21   247 John C Chambers  265   299   300   301 Giriraj R Chandak  46   302 Stephen J Chanock  9 Nish Chaturvedi  254 Yii-Der Ida Chen  108 Zhengming Chen  31 Ching-Yu Cheng  162   303   304 Yoon Shin Cho  218 Kaare Christensen  305 Ingrid E Christophersen  306   307 Marina Ciullo  200   308 John W Cole  309   310 Francis S Collins  92 Maria Pina Concas  215 Richard S Cooper  225 Miguel Cruz  311 Francesco Cucca  219   312 Michael J Cutler  313 Scott M Damrauer  52   147   314 Thomas M Dantoft  140 Gert J de Borst  315 Eco J C de Geus  125   316 Lisette C P G M de Groot  317 Philip L De Jager  318 Dominique P V de Kleijn  315 H Janaka de Silva  143 George V Dedoussis  83 Anneke I den Hollander  169 Shufa Du  273   274 Douglas F Easton  231   319 Kai-Uwe Eckardt  183   320 Petra J M Elders  321 A Heather Eliassen  126   322   323 Patrick T Ellinor  69   324   325 Sölve Elmståhl  118 Jeanette Erdmann  188 Michele K Evans  217 Diane Fatkin  326   327   328 Bjarke Feenstra  102 Mary F Feitosa  244 Luigi Ferrucci  329 Jose C Florez  129   216   330   331 Ian Ford  332 Myriam Fornage  257   333 Andre Franke  75 Paul W Franks  323   334   335 Barry I Freedman  336 Christian Gieger  88   337 Giorgia Girotto  62   215 Yvonne M Golightly  44   338 Clicerio Gonzalez-Villalpando  339 Penny Gordon-Larsen  273   274 Harald Grallert  88   337 Struan F A Grant  50   52   340   341   342 Niels Grarup  3 Lyn Griffiths  156 Vilmundur Gudnason  223   343 Christopher Haiman  344 Hakon Hakonarson  50   340   342   345 Torben Hansen  3 Catharina A Hartman  207 Andrew T Hattersley  346 Caroline Hayward  63   180 Iris M Heid  53 Chew-Kiat Heng  86   347 Christian Hengstenberg  348 Karl-Heinz Herzig  349   350 Alex W Hewitt  351   352   353 Haretsugu Hishigaki  134 David M Hougaard  58   106 Carel B Hoyng  169 Paul L Huang  45   325   354 Wei Huang  355 Wen-Yi Huang  9 Jennifer E Huffman  119 Steven C Hunt  356 Nina Hutri  357   358 Kristian Hveem  283   284 Elina Hyppönen  359   360 William G Iacono  261 Sahoko Ichihara  361 M Arfan Ikram  78 Carmen R Isasi  362 Marjo-Riitta Jarvelin  250   363   364   365 Zi-Bing Jin  245   366 Karl-Heinz Jöckel  96 Jost B Jonas  367   368   369   370 Peter K Joshi  148 Pekka Jousilahti  114 J Wouter Jukema  233   371   372 Mika Kähönen  373   374 Yoichiro Kamatani  23   375 Kui Dong Kang  376 Jaakko Kaprio  49 Sharon L R Kardia  47 Fredrik Karpe  377   378 Norihiro Kato  135 Maryam Kavousi  78 Frank Kee  65 Thorsten Kessler  264   379 Amit V Khera  45   380   381 Chiea Chuen Khor  85 Lambertus A L M Kiemeney  100   382 Bong-Jo Kim  132 Eung Kweon Kim  383   384 Hyung-Lae Kim  385 Paulus Kirchhof  386   387   388   389 Mika Kivimaki  390   391 Woon-Puay Koh  392 Heikki A Koistinen  114   393   394 Alexander Kokkinos  395 Jaspal S Kooner  300   301   396   397 Charles Kooperberg  110 Peter Kovacs  398 Adriaan Kraaijeveld  239 Peter Kraft  126 Ronald M Krauss  230 Meena Kumari  399 Zoltan Kutalik  38   39 Markku Laakso  400 Leslie A Lange  401 Claudia Langenberg  170   402   403 Lenore J Launer  217 Hyejin Lee  404 Nanette R Lee  294 Terho Lehtimäki  173   174 Rozenn N Lemaitre  48 Huaixing Li  131 Liming Li  405   406 Wolfgang Lieb  407 Xu Lin  131   408 Lars Lind  109 Allan Linneberg  140   409 Ching-Ti Liu  80 Jianjun Liu  85 Markus Loeffler  123   124 Barry London  410 Fan Lu  366 Steven A Lubitz  69   324   325 David A Mackey  351   353 Patrik K E Magnusson  411 JoAnn E Manson  45   60   74 Gregory M Marcus  412 Pedro Marques Vidal  413   414 Nicholas G Martin  104 Winfried März  76   415   416 Fumihiko Matsuda  145 Mark I McCarthy  34   377 Robert W McGarrah  417   418 Matt McGue  261 Amy Jayne McKnight  65 Sarah E Medland  419 Dan Mellström  193   420 Andres Metspalu  35 Braxton D Mitchell  210   211   335 Paul Mitchell  421 Dennis O Mook-Kanamori  2   422 Trevor A Mori  288 Andrew D Morris  423 Lorelei A Mucci  126 Patricia B Munroe  21   247 Mike A Nalls  159   160   424 Saman Nazarian  425 Amanda E Nelson  44   426 Matt J Neville  377   378 Christopher Newton-Cheh  216   325 Christopher S Nielsen  427   428 Harri Niinikoski  190   191 Kjell Nikus  175   429 Markus M Nöthen  430 Adesola Ogunniyi  431 Claes Ohlsson  193   432 Albertine J Oldehinkel  207 Lorena Orozco  433 Katja Pahkala  190   191   434 Päivi Pajukanta  42   435 Colin N A Palmer  436 Esteban J Parra  155 Cristian Pattaro  99 Oluf Pedersen  3 Craig E Pennell  122   209 Brenda W J H Penninx  184 Louis Perusse  71   437 Annette Peters  88   438   439 Patricia A Peyser  47 David J Porteous  63 Danielle Posthuma  136 Chris Power  440 Peter P Pramstaller  99 Michael A Province  244 Bruce M Psaty  48   441   442 Qibin Qi  362 Jia Qu  366 Daniel J Rader  52   443 Olli T Raitakari  190   191   444   445 Loukianos S Rallidis  446 Dabeeru C Rao  447 Susan Redline  45   60 Dermot F Reilly  448 Alexander P Reiner  110   441 Sang Youl Rhee  449 Paul M Ridker  45   74 Michiel Rienstra  240 Samuli Ripatti  25   49   450 Marylyn D Ritchie  52 Fernando Rivadeneira  36 Dan M Roden  451 Frits R Rosendaal  2 Jerome I Rotter  108 Igor Rudan  148 Femke Rutters  221 Seungho Ryu  150   452   453 Charumathi Sabanayagam  304   454 Babatunde Salako  455 Danish Saleheen  206   456 Veikko Salomaa  114 Nilesh J Samani  55   56 Dharambir K Sanghera  457   458   459   460 Naveed Sattar  461 Börge Schmidt  96 Helena Schmidt  462 Reinhold Schmidt  120 Matthias B Schulze  87   88   463 Heribert Schunkert  464 Laura J Scott  11 Rodney J Scott  465 Peter Sever  397 Wayne H H Sheu  466 M Benjamin Shoemaker  467 Xiao-Ou Shu  61 Eleanor M Simonsick  329 Mario Sims  468 Andrew B Singleton  159 Moritz F Sinner  379   469 J Gustav Smith  470   471   472 Harold Snieder  197 Tim D Spector  70 Beatrice Spedicati  62   215 Meir J Stampfer  126   322   323 Klaus J Stark  53 David P Strachan  473 Yasuharu Tabara  145 E Shyong Tai  66   474 Hua Tang  475 Jean-Claude Tardif  168   476 Thangavel A Thanaraj  176 Anke Tönjes  398 Tiinamaija Tuomi  49   172   477   478   479 Jaakko Tuomilehto  114   480   481 Maria-Teresa Tusié-Luna  277   482 Rob M van Dam  66   483 Pim van der Harst  239   240 Nathalie Van der Velde  36   484 Cornelia M van Duijn  31   78 Natasja M van Schoor  485 Veronique Vitart  180 Marie-Claude Vohl  437   486 Uwe Völker  229   487 Peter Vollenweider  413   414 Henry Völzke  229   488 Scott Vrieze  261 Niels H Wacher-Rodarte  489 Mark Walker  490 Gurpreet S Wander  491 Nicholas J Wareham  170 Richard M Watanabe  492   493   494 Hugh Watkins  34   103 David R Weir  93 Thomas M Werge  43   409 Elisabeth Widen  49 Gonneke Willemsen  125 Walter C Willett  126   323 James F Wilson  148   180 Peter W F Wilson  7   495 Tien Y Wong  368   496 Jeong-Taek Woo  449 Alan F Wright  180 Huichun Xu  210   211 Chittaranjan S Yajnik  497 Jian Yang  498   499 Mitsuhiro Yokota  500 Jian-Min Yuan  501   502 Eleftheria Zeggini  208   503 Babette S Zemel  52   68   341   342 Wei Zheng  61 Xiaofeng Zhu  165 M Carola Zillikens  36 Alan B Zonderman  217 John-Anker Zwart  252   504 23andMe Research TeamDiscovEHR (DiscovEHR and MyCode Community Health Initiative)eMERGE (Electronic Medical Records and Genomics Network)GPC-UGRPRACTICAL ConsortiumUnderstanding Society Scientific GroupVA Million Veteran ProgramGoncalo R Abecasis  11 Themistocles L Assimes  226   505 Adam Auton  73 Michael Boehnke  11 Daniel I Chasman  45   74 Tõnu Esko  35 Kari Stefansson  224   343 Guillaume Lettre  168   476 Cecilia M Lindgren  25   31   34 Maggie C Y Ng  506   507 Christopher J O'Donnell  45   60   508 Unnur Thorsteinsdottir  224   343 Peter M Visscher  12   31 Robin G Walters  31 Thomas W Winkler  53 Andrew R Wood  32 Panos Deloukas  21   509 Timothy M Frayling  32   510 Anne E Justice  18   19 Tuomas O Kilpeläinen  3 Adam E Locke  511 Karen L Mohlke  27 Kari E North  19 Yukinori Okada  24   512   513   514 Cristen J Willer  16   268   515 Kristin L Young  19 Segun Fatumo  403   516 Jeanne M McCaffery  517 Nicholas J Timpson  5   6 Joel N Hirschhorn  29   129   518 Yan V Sun  7   8 Sonja I Berndt  9 Ruth J F Loos  519   520   521   522
Affiliations

Polygenic prediction of body mass index and obesity through the life course and across ancestries

Roelof A J Smit et al. Nat Med. 2025 Sep.

Abstract

Polygenic scores (PGSs) for body mass index (BMI) may guide early prevention and targeted treatment of obesity. Using genetic data from up to 5.1 million people (4.6% African ancestry, 14.4% American ancestry, 8.4% East Asian ancestry, 71.1% European ancestry and 1.5% South Asian ancestry) from the GIANT consortium and 23andMe, Inc., we developed ancestry-specific and multi-ancestry PGSs. The multi-ancestry score explained 17.6% of BMI variation among UK Biobank participants of European ancestry. For other populations, this ranged from 16% in East Asian-Americans to 2.2% in rural Ugandans. In the ALSPAC study, children with higher PGSs showed accelerated BMI gain from age 2.5 years to adolescence, with earlier adiposity rebound. Adding the PGS to predictors available at birth nearly doubled explained variance for BMI from age 5 onward (for example, from 11% to 21% at age 8). Up to age 5, adding the PGS to early-life BMI improved prediction of BMI at age 18 (for example, from 22% to 35% at age 5). Higher PGSs were associated with greater adult weight gain. In intensive lifestyle intervention trials, individuals with higher PGSs lost modestly more weight in the first year (0.55 kg per s.d.) but were more likely to regain it. Overall, these data show that PGSs have the potential to improve obesity prediction, particularly when implemented early in life.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M.I.McC. (since June 2019) and A.Mah (since January 2020) are employees of Genentech and holders of Roche stock. Yu.J., Ji.S. and Ad.A. are employed by and hold stock or stock options in 23andMe, Inc. S.W.v.d.L. has received Roche funding for unrelated work. M.J.Ca. is Chief Scientist for Genomics England, a UK Government company. P.S. has received research awards from Pfizer, Inc. D.H. is currently employed at Bristol Myers Squibb. G.C.-P. is an employee of 23andMe, Inc. Since completing the work contributed to this paper, D.J.T. has left the University of Cambridge and is now employed by Genomics plc. I.N. is an employee and stock owner of Gilead Sciences; this work was conducted before employment by Gilead Sciences. P.Ki. received research support for basic, translational and clinical research projects from the German Research Foundation (DFG), the European Union, the British Heart Foundation, the Leducq Foundation, the Else-Kröner-Fresenius Foundation, the Dutch Heart Foundation (DHF), the Accelerating Clinical Trials funding stream in Canada, the Medical Research Council (UK) and the German Center for Cardiovascular Research and from several drug and device companies active in atrial fibrillation and has received honoraria from several such companies in the past but not in the last 5 years. P.Ki. is listed as inventor on two issued patents held by the University of Hamburg (Atrial Fibrillation Therapy WO 2015140571 and Markers for Atrial Fibrillation WO 2016012783). M.R. received consultancy fees from Bayer (OCEANIC-AF national PI) and InCarda Therapeutics (RESTORE-SR national PI) to the institution, unrelated to this research/dataset. M.J.Cu. has served on advisory boards or consulted for Boston Scientific, Biosense Webster, Janssen Scientific Affairs and Johnson & Johnson. R.J.F.L. has acted as a member of advisory boards and as a speaker for Eli Lilly and the Novo Nordisk Foundation, for which she has received fees. S.N. is a scientific advisor to Circle software, ADAS software, CardioSolv and ImriCor and receives grant support from Biosense Webster, ADAS software and ImriCor. S.A.Lu. is an employee of Novartis. S.A.Lu. received sponsored research support from Bristol Myers Squibb, Pfizer, Boehringer Ingelheim, Fitbit, Medtronic, Premier and IBM and has consulted for Bristol Myers Squibb, Pfizer, Blackstone Life Sciences and Invitae. P.T.E. receives sponsored research support from Bayer AG, Bristol Myers Squibb, Pfizer and Novo Nordisk; he has also served on advisory boards or consulted for Bayer AG. Her.S. has received honoraria for consulting from AstraZeneca, MSD/Merck, Daiichi, Servier, Amgen and Takeda Pharma. He has additionally received honoraria for lectures and/or chairs from AstraZeneca, BayerVital, BRAHMS, Daiichi, Medtronic, Novartis, Sanofi and Servier. S.E.G. is employed by Regeneron. C.J.W. is employed by Regeneron. B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. K.S. is employed by deCODE Genetics/Amgen, Inc. Va.S. is employed by deCODE Genetics/Amgen, Inc. G.T. is employed by deCODE Genetics/Amgen, Inc. U.T. is employed by deCODE Genetics/Amgen, Inc. E.Ba. is an employee of Empirico, Inc. Al.K. declares having received research grants through his affiliation from Novo Nordisk and Pharmaserve Lilly and consulting honoraria from Pharmaserve Lilly, Sanofi-Aventis, Novo Nordisk, MSD, AstraZeneca, ELPEN Pharma, Boehringer Ingelheim, Galenica Pharma, Epsilon Health and Winmedica. J.N.H. holds equity in Camp4 Therapeutics. A.E.L. is currently employed by and holds stock in Regeneron Pharmaceuticals, Inc. G.R.A. is an employee of Regeneron Pharmaceuticals and owns stock and stock options in Regeneron Pharmaceuticals. A.Pa. is currently employed by and holds stock in Regeneron Pharmaceuticals. O.G. is an employee and stock owner of UCB Pharma; this work was conducted before employment by UCB. N.G. is currently employed at Novo Nordisk A/S. M.E.K. is employed by SYNLAB Holding Deutschland GmbH. W.M. reports grants and personal fees from AMGEN, BASF, Sanofi, Siemens Diagnostics, Aegerion Pharmaceuticals, AstraZeneca, Danone Research, Numares, Pfizer and Hoffmann-La Roche; personal fees from MSD and Alexion; and grants from Abbott Diagnostics, all outside the submitted work. W.M. is employed by Synlab Holding Deutschland GmbH. C.J.O. is a current employee of Novartis Biomedical Research. S.M.D. receives research support from RenalytixAI and in-kind research support from Novo Nordisk, outside the scope of the current research. Ca.S. is currently employed by and holds stock in Regeneron Pharmaceuticals. J.C.F. received speaking honoraria from AstraZeneca, Merck and Novo Nordisk for talks over which he had full control of content and a consulting honorarium from AstraZeneca. H.L.L. receives support from a consulting contract between Data Tecnica International and the National Institute on Aging (NIA), National Institutes of Health (NIH). M.A.N. receives support from a consulting contract between Data Tecnica and the NIA, NIH. T.D.S. is a co-founder and shareholder of ZOE, Ltd. P.R.H.J.T. is a salaried employee of BioAge Labs, Inc. A.I.d.H. is currently an employee of AbbVie. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Study overview.
PGSs were constructed using ancestry-specific GWAS summary statistics, using ancestry-specific (PRS-CS) and ancestry-combined (PRS-CSx) approaches. Tuning of the global shrinkage parameter (ϕ) and optimal weights for the linear combination version of PRS-CSx was performed in the UKBB. The best-performing score across multiple ancestries was taken forward to independent validation studies (linear combination version of PRS-CSx with ϕ 1 × 10−2). Population descriptors shown in the figure reflect a combination of self-identified ethnicity and genetic similarity. Created in BioRender: Smit, R. (2025): https://BioRender.com/fglrflj.
Fig. 2
Fig. 2. Explained variance for BMI in adult populations.
a, Explained variance for BMI in UKBB tuning populations, defined as adjusted R2 of the rank-based inverse-normal transformed BMI (by sex) predicted by the PGS, incremental to age, genotyping array and ancestry principal components. Error bars represent 95% confidence intervals (CIs) from 1,000 bootstrap resamples. The ancestry-matched PGS is the best-performing PRS-CS score using ancestry-specific GWAS summary statistics. The genome-wide significant score reflects a weighted sum of near-independent SNPs obtained from approximate COJO multi-SNP analyses of a fixed-effect meta-analysis of all contributing GWASs. The multi-ancestral PGSLC reflects the best-performing PRS-CSx score consisting of a linear combination of five ancestry-specific scores, with weights being specific to the validation population (for example, AFR). Population labels follow PAN-UKBB assignment of genetically determined ancestry. Sample sizes (distinct individuals): African 6,154; Admixed American 971; Middle Eastern 1,553; East Asian 2,660; Central/South Asian 8,005; European 20,000. b, Explained variance for BMI within validation populations, comparing the multi-ancestry PGSLC to a previously published score (PGSKhera) based on a smaller BMI GWAS meta-analysis. Same R2 definition and CI estimation as in a. Population descriptors reflect a combination of self-identified ethnicity and genetic similarity. For the MVP’s non-Hispanic Asian (AS) group, the result shown is for the PGSLC using the linear combination weights derived from UKBB-EAS. Sample sizes (distinct individuals), from left to right: AFR 12,263, 2,332, 18,701; AMR 10,281, 8,096; AS 4,201; EAS 1,359; SAS 1,177; EUR 13,673, 69,828, 340,224. c, Separation in BMI, body fat percentage (BF%) and waist-to-hip ratio (WHR) across deciles of the PGSLC within the validation subset of the UKBB participants of European-like ancestry (n ~ 340,000). All traits were rank-based inverse-normal transformed by sex.
Fig. 3
Fig. 3. Prediction of prevalent obesity outcomes in adults.
a, Separation in prevalence of obesity (BMI ≥ 30 kg m2) across 1% groups of PGSKhera and PGSLC within the validation subset of the UKBB participants of European-like ancestry (n ~ 340,000), with reference lines for the bottom and top 1% groups. Error bars show 95% confidence intervals (CIs) based on the normal approximation to the binomial distribution. The horizontal lines correspond to the average prevalence (black, dotted) and the prevalence of obesity within the top and bottom 1% of PGSKhera and PGSLC (red and blue, respectively). b, Odds ratios with 95% CIs for prevalent obesity class I or higher, per s.d. of PGSKhera and PGSLC, adjusted for age, sex, principal components of ancestry and genotyping array. All PGSs were standardized using the mean and s.d. of the PGS within individuals who did not have obesity class I or higher, to account for differences in prevalence across validation populations. Sample sizes (distinct individuals), from left to right: AFR 12,263, 2,332, 18,701; AMR 10,281, 8,096; AS 4,201; EAS 1,359; SAS 1,177; EUR 13,673, 69,828, 340,224. c, AUC classification of prevalent obesity outcomes in the BioMe Biobank, the MVP and the UKBB. Models including PGSs (included as a continuous predictor) additionally include principal components of ancestry. CBS10, self-reported comparative body size at age 10 years. Restricted to estimates where the number of individuals with the obesity outcome was at least 50.
Fig. 4
Fig. 4. PGSLC performance during childhood and adolescence.
a, Repeated cross-sectional linear regression associations of standardized PGSLC with BMI and height, with both standardized within sample by sex and timepoint. Data are presented as regression coefficient with 95% confidence interval (CI). Ponderal index was used instead of BMI at birth. Associations were adjusted for age and principal components of ancestry. Sample sizes, based on repeated measurements, from left to right, for BMI: 4,740, 638, 847, 814, 769, 41, 732, 729, 725, 720, 699, 5,816, 4,863, 5,570, 5,368, 5,187, 4,910, 4,556, 4,024, 3,603, 2,780; and height: 4,802, 638, 847, 814, 771, 741, 734, 729, 726, 723, 701, 5,820, 5,160, 5,572, 5,379, 5,188, 4,956, 4,561, 4,032, 3,606, 2,782. b, Sequentially plotted mean BMI trajectories from the age of 4 months to 24 years with knot points from linear spline multilevel models, accounting for sex and principal components of ancestry, of PGSLC (bottom 10%, middle 80%, top 10%). c, Contribution of PGSLC to explained variance (adjusted R2) for BMI, rank-based inverse-normal transformed by sex and timepoint. Ponderal index was used instead of BMI at birth. Data are presented as R2 values computed from the original dataset, with error bars representing 95% confidence intervals (2.5th–97.5th percentiles) estimated from 1,000 bootstrap resamples. Predictors available at birth were birthweight, maternal education, pre-pregnancy maternal BMI, maternal age at date of birth and household social status. The left panel shows explained variance for BMI at the timepoint shown on the x axis. In contrast, the right panel shows explained variance for BMI measured at 18 years, with early-life BMI measurement shown on the x axis used as predictors. Sample sizes, based on repeated measurements, from left to right: 3,800, 839, 714, 1,192, 4,062, 3,044, 940, 594, 737, 725, 890, 3,310.
Fig. 5
Fig. 5. AUC for obesity classification at age 50, stratified by having overweight or obesity at age 20.
Analyses performed within the PLCO Cancer Screening Trial. Restricted to estimates where the number of individuals with the obesity outcome was at least 50. Population descriptors were provided by the PLCO investigators and reflect genetically determined ancestry using Genetic Relationship and Fingerprinting (GRAF). PCs, principal components; y, years; M1, model with birth year, sex, BMI at 20y, and PCs.
Fig. 6
Fig. 6. Impact of PGSLC on weight change due to ILIs.
Interaction effect between PGSLC and trial arm (ILI versus comparison arm) for weight change within the first year of follow-up (left) and weight change after the first year in the subset of individuals who had lost ≥3% of baseline weight at year 1 (right). Data are presented as study-specific and study-combined interaction regression coefficients (with 95% confidence interval (CI)), pooled through inverse-variance weighted fixed-effect meta-analysis. Weight change was assessed by using weight at follow-up timepoint(s) as outcome in the linear mixed models, adjusting for initial weight (baseline or year 1, respectively). LA, Look AHEAD. Population descriptors reflect race and ethnicity, as reported by dbGAP variable phv00201855.v2.p1 (DPP) or self-report by participants (LA). Study-specific sample sizes (distinct individuals, with pooled sample sizes for ‘All’), from top to bottom, for forest plot on the left: 295, 374, 251, 428, 839, 1,722, 1,385, 2,524; and on the right: 118, 186, 128, 233, 428, 951, 674, 1,370.
Extended Data Fig. 1
Extended Data Fig. 1. Distribution of obesity categories and average BMI in adult tuning and validation populations.
Distribution of obesity categories and mean BMI (+/- standard deviation) across adult tuning and validation populations. Asian-specific BMI cutoffs (see Methods) were applied to East Asian (EAS), South Asian (SAS), and non-Hispanic Asian (AS) populations, in contrast to African (AFR), American (AMR), European (EUR), and Middle Eastern (MID) populations. UKBB, UK Biobank; MVP, the Million Veteran Program; GPC-UGR, the Uganda General Population Cohort. Sample sizes (distinct individuals), from left to right, for Tuning: 6154, 971, 1553, 2660, 8005, 20000; Validation: 12263, 2332, 18701, 10281, 8096, 4201, 1359, 1177, 13673, 69828, 340224; and BMI: 12263, 10281, 1359, 1177, 13673, 2332, 18701, 8096, 4201, 69828, 6154, 971, 1553, 2660, 8005, 340224.
Extended Data Fig. 2
Extended Data Fig. 2. Prevalence of obesity categories across 1%-groups of PGSs.
Prevalence of obesity category, with 95% confidence intervals based on the normal approximation to the binomial distribution, across 1%-groups of PGSKhera and PGSLC within the validation subset of the UKBB participants of European ancestry (N ~ 340k). The black dotted line denotes the average prevalence in the entire subset. The red and blue lines correspond to the prevalence of the obesity category within the top and bottom 1% of PGSKhera and PGSLC, respectively.
Extended Data Fig. 3
Extended Data Fig. 3. Odds ratio per standard deviation (SD) increase of PGSLC for prevalent obesity categories.
All PGS were standardised using the mean and SD of the PGS of individuals who did not have the outcome of interest (that is, those with a BMI value below the threshold for a given obesity category), to account for differences in prevalence across validation populations. MVP, Million Veteran Program; GPC-UGR, Uganda General Population Cohort; UKB, UK Biobank. Sample sizes (distinct individuals) per grouped set of estimates, left to right: AFR 12263, 2332, 18701; AMR 10281, 8096; AS 4201; EAS 1359; SAS 1177; EUR 13673, 69828, 340224.
Extended Data Fig. 4
Extended Data Fig. 4. Distributional shifts of ancestry-specific scores before and after ancestry-calibration.
Distributional shifts of ancestry-specific scores which are linearly combined to create PGSLC, across UK Biobank-tuning and BioMe-validation populations, before (top) and after (bottom) ancestry–calibration using 1000 Genomes reference data (Methods). Each plot shows a single ancestry-specific score, with separate lines showing the distribution across ancestries. For these plots, each score was standardised to mean zero and variance one once across all participants of a given study.
Extended Data Fig. 5
Extended Data Fig. 5. Association between PGSLC and height trajectory between birth and age 24.
Estimated using linear spline multilevel models with repeated measures from the ALSPAC cohort.
Extended Data Fig. 6
Extended Data Fig. 6. AUC for obesity outcomes at age 50, stratified by sex and overweight/obesity status at age 20.
Estimated in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Restricted to estimates where the number of individuals with the obesity outcome was at least 50. Population labels as provided by PLCO.
Extended Data Fig. 7
Extended Data Fig. 7. Distribution of PGS across intensive lifestyle intervention trial arms.
Scores were standardised to mean zero and variance one by population group, ignoring assigned trial arm. Vertical lines indicate the mean PGS per arm.

References

    1. Dale, C. E. et al. Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes, and type 2 diabetes mellitus: a Mendelian randomization analysis. Circulation135, 2373–2388 (2017). - PMC - PubMed
    1. Nyberg, S. T. et al. Obesity and loss of disease-free years owing to major non-communicable diseases: a multicohort study. Lancet Public Health3, e490–e497 (2018). - PMC - PubMed
    1. Sattar, N., McMurray, J. J. V., McInnes, I. B., Aroda, V. R. & Lean, M. E. J. Treating chronic diseases without tackling excess adiposity promotes multimorbidity. Lancet Diabetes Endocrinol.11, 58–62 (2023). - PubMed
    1. Tim, L., Rachel, J.-L., Jaynaide, P., Hannah, B. & Maggie, G. World Obesity Atlas 2023. https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_202... (World Obesity Federation, 2023).
    1. Elmaleh-Sachs, A. et al. Obesity management in adults: a review. JAMA330, 2000–2015 (2023). - PMC - PubMed

Grants and funding

LinkOut - more resources