Improved multiancestry fine-mapping identifies cis-regulatory variants underlying molecular traits and disease risk
- PMID: 40691406
- DOI: 10.1038/s41588-025-02262-7
Improved multiancestry fine-mapping identifies cis-regulatory variants underlying molecular traits and disease risk
Abstract
Multiancestry statistical fine-mapping of cis-molecular quantitative trait loci (cis-molQTL) aims to improve the precision of distinguishing causal cis-molQTLs from tagging variants. Here we present the sum of shared single effects (SuShiE) model, which leverages linkage disequilibrium heterogeneity to improve fine-mapping precision, infer cross-ancestry effect size correlations and estimate ancestry-specific expression prediction weights. Through extensive simulations, we find that SuShiE consistently outperforms existing methods. We apply SuShiE to 36,907 molecular phenotypes including mRNA expression and protein levels from individuals of diverse ancestries in the TOPMed-MESA and GENOA studies. SuShiE fine-maps cis-molQTLs for 18.2% more genes compared with existing methods while prioritizing fewer variants and exhibiting greater functional enrichment. While SuShiE infers highly consistent cis-molQTL architectures across ancestries, it finds evidence of heterogeneity at genes with predicted loss-of-function intolerance. Lastly, using SuShiE-derived cis-molQTL effect sizes, we perform transcriptome- and proteome-wide association studies on six white blood cell-related traits in the All of Us biobank and identify 25.4% more genes compared with existing methods. Overall, SuShiE provides new insights into the cis-genetic architecture of molecular traits.
© 2025. The Author(s), under exclusive licence to Springer Nature America, Inc.
Conflict of interest statement
Competing interests: L.W. provided consulting service to Pupil Bio Inc. and reviewed manuscripts for Gastroenterology Report, not related to this study, and received honorarium. S.G. received consulting fees from Eleven Therapeutics unrelated to this work. The other authors declare no competing interests.
Update of
-
Improved multi-ancestry fine-mapping identifies cis-regulatory variants underlying molecular traits and disease risk.medRxiv [Preprint]. 2024 Apr 16:2024.04.15.24305836. doi: 10.1101/2024.04.15.24305836. medRxiv. 2024. Update in: Nat Genet. 2025 Aug;57(8):1881-1889. doi: 10.1038/s41588-025-02262-7. PMID: 38699369 Free PMC article. Updated. Preprint.
Similar articles
-
Improved multi-ancestry fine-mapping identifies cis-regulatory variants underlying molecular traits and disease risk.medRxiv [Preprint]. 2024 Apr 16:2024.04.15.24305836. doi: 10.1101/2024.04.15.24305836. medRxiv. 2024. Update in: Nat Genet. 2025 Aug;57(8):1881-1889. doi: 10.1038/s41588-025-02262-7. PMID: 38699369 Free PMC article. Updated. Preprint.
-
Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies.Am J Hum Genet. 2025 May 1;112(5):1215-1232. doi: 10.1016/j.ajhg.2025.02.020. Epub 2025 Mar 26. Am J Hum Genet. 2025. PMID: 40147449
-
Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants.Hum Mol Genet. 2022 Mar 21;31(6):888-900. doi: 10.1093/hmg/ddab294. Hum Mol Genet. 2022. PMID: 34617105 Free PMC article.
-
Identification and Functional Assessment of Candidate Causal Cis-Regulatory Variants Underlying Electrocardiographic QT Interval GWAS Loci.Circ Genom Precis Med. 2025 Jun;18(3):e005032. doi: 10.1161/CIRCGEN.124.005032. Epub 2025 May 27. Circ Genom Precis Med. 2025. PMID: 40421528
-
The complex genetic architecture of Alzheimer's disease: novel insights and future directions.EBioMedicine. 2023 Apr;90:104511. doi: 10.1016/j.ebiom.2023.104511. Epub 2023 Mar 10. EBioMedicine. 2023. PMID: 36907103 Free PMC article. Review.
Cited by
-
Fast and flexible joint fine-mapping of multiple traits via the Sum of Single Effects model.bioRxiv [Preprint]. 2024 Jun 18:2023.04.14.536893. doi: 10.1101/2023.04.14.536893. bioRxiv. 2024. PMID: 37425935 Free PMC article. Preprint.
-
Powerful mapping of cis-genetic effects on gene expression across diverse populations reveals novel disease-critical genes.medRxiv [Preprint]. 2024 Sep 26:2024.09.25.24314410. doi: 10.1101/2024.09.25.24314410. medRxiv. 2024. PMID: 39399015 Free PMC article. Preprint.
-
Efficient count-based models improve power and robustness for large-scale single-cell eQTL mapping.medRxiv [Preprint]. 2025 Mar 5:2025.01.18.25320755. doi: 10.1101/2025.01.18.25320755. medRxiv. 2025. PMID: 40093202 Free PMC article. Preprint.
References
-
- Aguet, F. et al. Molecular quantitative trait loci. Nat. Rev. Methods Prim. 3, 4 (2023).
-
- Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Ser. B 82, 1273–1300 (2020).
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources