Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 22;15(1):26636.
doi: 10.1038/s41598-025-04062-9.

Identification of SnRNA U6 as an endogenous reference gene for normalization of MiRNA expression data in COVID-19 patients

Affiliations

Identification of SnRNA U6 as an endogenous reference gene for normalization of MiRNA expression data in COVID-19 patients

Íris Terezinha Santos de Santana Silva et al. Sci Rep. .

Abstract

SARS-CoV-2, the virus responsible for COVID-19, exhibits structural differences compared to other coronaviruses that impact transmission dynamics and host response. Although vaccines have reduced severe hospitalizations and deaths, understanding the infection remains challenging, and finding viable biomarkers for disease severity would be beneficial. In this context, microRNAs (miRNAs) are a set of small non-coding RNAs that have emerged as potential biomarkers for numerous diseases. However, assessing miRNA expression requires the normalization of RT-qPCR data using appropriate endogenous reference genes. The selection of these reference genes remains a major challenge, directly impacting the accuracy of expression analyses. Although several small RNAs, including snRNAs, have been evaluated, there is still no consensus regarding the optimal reference genes for the normalization of plasma miRNA expression data in COVID-19 infection. This study evaluated five candidate genes-including RNU6B, snRNA U6 (small nuclear RNAs) and three miRNAs (miR-320a, miR-342-3p, and miR-328) as potential endogenous normalizers for analyzing miRNA expression in the plasma of COVID-19 patients. The snRNA U6 showed greater stability using a combination of statistical algorithms (NormFinder, RefFinder, BestKeeper, and GeNorm), indicating that this snRNA can be used as a robust internal reference for analysis in the plasma of COVID-19 patients.

Keywords: Covid-19; Normalization; RT-qPCR; SARS-CoV-2; miRNA; snRNAU6.

PubMed Disclaimer

Conflict of interest statement

Declarations. Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Analysis of endogenous normalizers stability using NormFinder algorithm.
Fig. 2
Fig. 2
Assessment of endogenous reference gene stability using the different algorithms: BestKeeper, ΔCt, GeNorm and NormFinder.
Fig. 3
Fig. 3
Comparative expression levels of normalization candidates in case individuals with SARS-CoV-2 RNA detectable by RT-qPCR and respiratory symptoms and control (individuals with SARS-CoV-2 RNA undetectable by RT-qPCR groups.
Fig. 4
Fig. 4
Map of Brazil and the state of Bahia, highlighting the area (cities in the southern micro-region) attended by LAFEM/UESC as campaign laboratory to SARS-CoV-2 detection.
Fig. 5
Fig. 5
Flow diagram of the development research processes.
Fig. 6
Fig. 6
Procedures and main steps of miRNA expression analyses by RT-qPCR.

Similar articles

  • microRNAs for qPCR Normalization Under Morphofunctional Conditions in Bovine Sperm (Bos taurus).
    de Souza LP, Nunes LS, Salvi LC, Gonçalves LDS, Reis LFVD, Acosta IB, Corcini CD, Junior ASV, Barreto FG, Vieira MB, Silveira DC, Vieira JM, Ilha GF, Domingues WB, Campos VF. de Souza LP, et al. Mol Reprod Dev. 2025 Aug;92(8):e70045. doi: 10.1002/mrd.70045. Mol Reprod Dev. 2025. PMID: 40767510 Free PMC article.
  • Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.
    Arevalo-Rodriguez I, Mateos-Haro M, Dinnes J, Ciapponi A, Davenport C, Buitrago-Garcia D, Bennouna-Dalero T, Roqué-Figuls M, Van den Bruel A, von Eije KJ, Emperador D, Hooft L, Spijker R, Leeflang MM, Takwoingi Y, Deeks JJ. Arevalo-Rodriguez I, et al. Cochrane Database Syst Rev. 2024 Oct 14;10(10):CD015618. doi: 10.1002/14651858.CD015618. Cochrane Database Syst Rev. 2024. PMID: 39400904
  • Antibody tests for identification of current and past infection with SARS-CoV-2.
    Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Fox T, et al. Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article.
  • The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
    Davenport C, Arevalo-Rodriguez I, Mateos-Haro M, Berhane S, Dinnes J, Spijker R, Buitrago-Garcia D, Ciapponi A, Takwoingi Y, Deeks JJ, Emperador D, Leeflang MMG, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Davenport C, et al. Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780. Cochrane Database Syst Rev. 2024. PMID: 39679851 Free PMC article.
  • Multidisciplinary collaborative guidance on the assessment and treatment of patients with Long COVID: A compendium statement.
    Cheng AL, Herman E, Abramoff B, Anderson JR, Azola A, Baratta JM, Bartels MN, Bhavaraju-Sanka R, Blitshteyn S, Fine JS, Fleming TK, Verduzco-Gutierrez M, Herrera JE, Karnik R, Kurylo M, Longo MT, McCauley MD, Melamed E, Miglis MG, Neal JD, Oleson CV, Putrino D, Rydberg L, Silver JK, Terzic CM, Whiteson JH, Niehaus WN. Cheng AL, et al. PM R. 2025 Jun;17(6):684-708. doi: 10.1002/pmrj.13397. Epub 2025 Apr 22. PM R. 2025. PMID: 40261198

References

    1. Cevik, M., Kuppalli, K., Kindrachuk, J. & Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ371, 1–6 (2020). - PubMed
    1. Eastin, C. & Eastin, T. Clinical characteristics of coronavirus disease 2019 in China. J. Emerg. Med.58, 711–712 (2020).
    1. Araf, Y. et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol.94, 1825–1832 (2022). - PMC - PubMed
    1. Mistry, P. et al. SARS-CoV-2 variants, vaccines, and host immunity. Front. Immunol.12, 809244 (2022). - PMC - PubMed
    1. Santos, C. V. B. et al. The effectiveness of COVID-19 vaccines against severe cases and deaths in Brazil from 2021 to 2022: A registry-based study. Lancet Reg. Health – Am.20, 1–13 (2023). - PMC - PubMed