Development and validation of machine learning model to predict early death of melanoma brain metastasis patients
- PMID: 40697382
- PMCID: PMC12279705
- DOI: 10.3389/fonc.2025.1517961
Development and validation of machine learning model to predict early death of melanoma brain metastasis patients
Abstract
Background: Melanoma has the third highest rate of brain metastases among all cancers and is associated with poor long-term survival. This study aimed to develop machine learning models to predict early death in melanoma brain metastasis (MBM) patients to guide clinical decision-making.
Methods: We analyzed MBM patients from the SEER database and Xinjiang Medical University. Patients were randomly divided into training and testing cohorts (7:3 ratio). Seven machine learning models were developed and validated using cross-validation, ROC analysis, decision curve analysis, and calibration curves to predict cancer-specific early death (CSED) and all-cause early death (ACED) within 3 months of diagnosis.
Results: Among 1,547 MBM patients, 531 (34.3%) experienced CSED, and 554 (35.8%) experienced ACED. Key predictive factors included age, treatment modalities (radiation, chemotherapy, surgery), tumor characteristics (ulceration), and extracranial metastases (bone, liver). XGBoost achieved the best performance for ACED prediction (AUC=0.776), while logistic regression performed best for CSED prediction (AUC=0.694). External validation confirmed model reliability with comparable performance.
Conclusion: These machine learning models demonstrate strong predictive performance and may assist clinicians in early risk stratification and treatment planning for MBM patients. The models provide objective risk assessment tools that could improve patient counseling and guide aggressive versus palliative care decisions.
Keywords: brain metastasis; early death; machine learning; melanoma; prognosis.
Copyright © 2025 Maihemuti, Kamaierjiang, Maimaiti, Wu, Dai and Jiang.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures









Similar articles
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.Clin Orthop Relat Res. 2024 Dec 1;482(12):2193-2208. doi: 10.1097/CORR.0000000000003185. Epub 2024 Jul 23. Clin Orthop Relat Res. 2024. PMID: 39051924
-
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.J Med Internet Res. 2025 May 26;27:e66733. doi: 10.2196/66733. J Med Internet Res. 2025. PMID: 40418571 Free PMC article.
-
Development and validation of a nomogram for predicting the early death of anaplastic thyroid cancer: a SEER population-based study.J Cancer Res Clin Oncol. 2023 Nov;149(17):16001-16013. doi: 10.1007/s00432-023-05302-z. Epub 2023 Sep 9. J Cancer Res Clin Oncol. 2023. PMID: 37689588 Free PMC article.
-
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2. Cochrane Database Syst Rev. 2022. PMID: 36161421 Free PMC article.
-
The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery.Cochrane Database Syst Rev. 2021 Dec 21;12(12):CD013139. doi: 10.1002/14651858.CD013139.pub2. Cochrane Database Syst Rev. 2021. PMID: 34931303 Free PMC article.
References
-
- Ascha MS, Ostrom QT, Wright J, Kumthekar P, Bordeaux JS, Sloan AE, et al. Lifetime occurrence of brain metastases arising from lung, breast, and skin cancers in the elderly: A SEER-medicare study. Cancer Epidemiol Biomarkers Prev. (2019) 28:917–25. doi: 10.1158/1055-9965.EPI-18-1116, PMID: - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources