Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 1;27(30):8338-8343.
doi: 10.1021/acs.orglett.5c02611. Epub 2025 Jul 24.

Unexpected Reactivity of Nitrones: Catalytic Insertion of CS2

Affiliations

Unexpected Reactivity of Nitrones: Catalytic Insertion of CS2

Marcos López-Aguilar et al. Org Lett. .

Abstract

A new reactivity mode for nitrones is reported, consisting of the chloride-catalyzed insertion of CS2 to afford thioamides. This reaction proceeds under metal-free and mild conditions, tolerates a broad family of substrates, and is robust and easily scalable, being successfully applied to the synthesis of the HIV-1 reverse transcriptase inhibitor UC-781. Mechanistic studies, supported by DFT calculations, have revealed the role of chloride anions in the activation of CS2 and its subsequent insertion into nitrones.

PubMed Disclaimer

Figures

1
1. State of the Art for the Synthesis of Thioamides
2
2. Synthesis of 4-Chloro-N-phenylbenzothioamide (3a) from CS2 and Nitrone 1a, Catalyzed by TBACl
1
1
Reaction energy profile from Z -1b to IV (3b).
3
3. Chloride-Catalyzed Synthesis of Thioamides 3a3ah by Insertion of CS2 in Nitrones 1a-1ah
4
4. Scalability and Synthetic Application of the Insertion of CS2 in Nitrones

References

    1. Schwalen C. J., Hudson G. A., Kille B., Mitchell D. A.. Bioinformatic Expansion and Discovery of Thiopeptide Antibiotics. J. Am. Chem. Soc. 2018;140:9494–9501. doi: 10.1021/jacs.8b03896. - DOI - PMC - PubMed
    2. Santos-Aberturas J., Chandra G., Frattaruolo L., Lacret R., Pham T. H., Vior N. M., Eyles T. H., Truman A. W.. Uncovering the Unexplored Diversity of Thioamidated Ribosomal Peptides in Actinobacteria Using the RiPPER Genome Mining Tool. Nucleic Acid Res. 2019;47:4624–4637. doi: 10.1093/nar/gkz192. - DOI - PMC - PubMed
    3. Liao Y., Zhang S., Jiang X.. Construction of Thioamide Peptides from Chiral Amino Acids. Angew. Chem., Int. Ed. 2023;62:e202303625. doi: 10.1002/anie.202303625. - DOI - PubMed
    4. For a general book chapter, see:

    5. Barrett, T. M. ; Fiore, K. E. ; Liu, C. ; James Petersson, E. In Thioamide-Containing Peptides and Proteins, in Chemistry of Thioamides; Murai, T. , Ed.; Springer: Singapore, 2019.
    1. Kenney G. E., Dassama L. M., Pandelia M.-E., Gizzi A. S., Martinie R. J., Gao P., DeHart C. J., Schachner L. F., Skinner O. S., Ro S. Y.. et al. The Biosynthesis of Methanobactin. Science. 2018;359:1411–1416. doi: 10.1126/science.aap9437. - DOI - PMC - PubMed
    2. Litomska A., Ishida K., Dunbar K. L., Boettger M., Coyne S., Hertweck C.. Enzymatic Thioamide Formation in a Bacterial Antimetabolite Pathway. Angew. Chem., Int. Ed. 2018;57:11574–11578. doi: 10.1002/anie.201804158. - DOI - PubMed
    3. Mahanta N., Szantai-Kis D. M., Petersson E. J., Mitchell D. A.. Biosynthesis and Chemical Application of Thioamides. ACS Chem. Biol. 2019;14:142–163. doi: 10.1021/acschembio.8b01022. - DOI - PMC - PubMed
    1. For a general review, see:

    2. Jagodzinski T. S.. Thioamides as Useful Synthons in the Synthesis of Heterocycles. Chem. Rev. 2003;103:197. doi: 10.1021/cr0200015. - DOI - PubMed
    3. For selected previous examples, see:

    4. Inamoto K., Hasegawa C., Hiroya K., Doi T.. Palladium-Catalyzed Synthesis of 2-Substituted Benzothiazoles via a C-H Functionalization/Intramolecular C-S Bond Formation Process. Org. Lett. 2008;10:5147–5150. doi: 10.1021/ol802033p. - DOI - PubMed
    5. Wang H., Wang L., Shang J., Li X., Wang H., Gui J., Lei A.. Fe-Catalysed Oxidative C-H Functionalization/C-S Bond Formation. Chem. Commun. 2012;48:76–78. doi: 10.1039/C1CC16184A. - DOI - PubMed
    6. Yajima K., Yamaguchi K., Mizuno N.. Facile Access to 3,5-Symmetrically Disubstituted 1,2,4-Thiadiazoles through Phosphovanadomolybdic Acid Catalyzed Aerobic Oxidative Dimerization of Primary Thioamides. Chem. Commun. 2014;50:6748–6750. doi: 10.1039/C4CC02313G. - DOI - PubMed
    1. Chen X., Mietlicki-Baase E. G., Barrett T. M., McGrath L. E., Koch-Laskowski K., Ferrie J. J., Hayes M. R., Petersson E. J.. Thioamide Substitution Selectively Modulates Proteolysis and Receptor Activity of Therapeutic Peptide Hormones. J. Am. Chem. Soc. 2017;139:16688–16695. doi: 10.1021/jacs.7b08417. - DOI - PMC - PubMed
    2. Ghosh P., Raj N., Verma H., Patel M., Chakraborti S., Khatri B., Doreswamy C. M., Anandakumar S. R., Seekallu S., Dinesh M. B., Jadhav G., Yadav P. N., Chatterjee J.. An Amide to Thioamide Substitution Improves the Permeability and Bioavailability of Macrocyclic Peptides. Nat. Commun. 2023;14:6050. doi: 10.1038/s41467-023-41748-y. - DOI - PMC - PubMed
    1. Watanabe H., Kamigaito M.. Direct radical Copolymerization of Thioamides to Generate Vinyl Polymers with Degradable Thioether Bonds in the Backbones. J. Am. Chem. Soc. 2023;145:10948–10953. doi: 10.1021/jacs.3c01796. - DOI - PMC - PubMed

LinkOut - more resources