Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug 4;64(30):15760-15773.
doi: 10.1021/acs.inorgchem.5c02587. Epub 2025 Jul 24.

Turning the Tables: Ligand-Centered Hydride Shuttling in Organometallic BIP-Al Systems

Affiliations

Turning the Tables: Ligand-Centered Hydride Shuttling in Organometallic BIP-Al Systems

Juan Manuel Delgado-Collado et al. Inorg Chem. .

Abstract

The reversible storage and release of hydride equivalents remains a central challenge in the design of biomimetic redox systems. Cationic 2,6-bis(imino)pyridine organoaluminum complexes [(4-R-BIP)AlR2]+ (where R = H; R' = Me, 1a; R' = Et, 1b; R = Bn; R' = Me, 1c) and their neutral 2,6-bis(imino)-4-R-dihydropyridinate counterparts [(4-R-HBIP)AlR2] 2a-c are presented as chemically reversible hydride exchangers. Interconversion between these systems is achieved through strong reducing agents such as M+[HBEt3]- (where M = Li; Na) or LiAlH4, while powerful electrophiles like B(C6F5)3 or cationic trityl salts Ph3C+ enable the reverse transformation, with the latter providing complete selectivity. Overall, this reversible hydride exchange mirrors natural NAD(P)H/NADP+ cofactor system. These findings establish a new platform for ligand-centered hydride shuttling, where the metal fragment acts as a passive modulator─inverting the traditional roles assigned to metal and ligand.

PubMed Disclaimer

Figures

1
1. Natural NAD­(P)+/NAD­(P)H System
2
2. Synthetic Pathways to BIP-based Dihydropyridinate–Metal Complexes
3
3. Irreversible Hydride Transfer from Zn­(II) 1,4-Dihydropyridinates
1
1. Synthesis of Cationic Complexes of Type 1 used as Starting Materials in this Work
4
4. Reaction of Nonsubstituted Cations 1a,b with Strong Hydride Donors
1
1
ORTEP representation of the structure of compound 2b. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al–N(1): 2.218(5); Al–N(2): 1.893(5); Al–N(3): 2.238(5); Al–C(36): 1.993(8); Al–C(34): 1.981(6); N(1)–C(14): 1.274(7); N2–C(15): 1.383(7); C(14)–C(15): 1.451(8); C(13)–C(14): 1.515(8); C(15)–C(16): 1.346(9); C(16)–C(17): 1.485(9); N(2)–Al–N(1): 76.0(2); N(2)–Al–C(36): 136.3(2); N(2)–Al–C(34): 112.7(2); C(34)–Al–C(36): 111.0(3); N(2)–Al–N(3): 76.5(2); N(1)–Al–N(3): 150.9(2).
5
5. Regeneration of Cations 1 from Dihydropyridinates 2 with a Trityl Salt
2
2
ORTEP representation of the structure of compound 1b·B­(C 6 F 5 ) 4 . Hydrogen atoms and 2.5 molecules of CH2Cl2 have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Al–N(1): 2.2028(16); Al–N(2): 2.0081(16); Al–N(3): 2.1733(16); Al–C(36): 1.968(3); Al–C(34): 1.970(3); N(1)–C(2): 1.282(2); N2–C(3): 1.342(2); N(2)–C(7): 1.342(2); N(3)–C(8): 1.283(2); C(1)–C(2): 1.493(3); C(3)–C(2): 1.488(3); C(3)–C(4): 1.384(2); C(4)–C(5): 1.384(3); C(5)–C(6): 1.387(3); C(6)–C(7): 1.389(3); C(7)–C(8): 1.487(3); C(8)–C(9): 1.486(3); N(2)–Al–N(1): 74.73(6); N(2)–Al–C(36): 102.30(11); N(2)–Al–C(34): 139.64(11); C(34)–Al–C(36): 117.99­(14); N(2)–Al–N(3): 75.25(6); N(1)–Al–N(3): 147.22(7).
6
6. Reaction of the Dihydropyridinate Complexes 2a and 2b with B­(C6F5)3, and Two Alternative Mechanisms to Explain the Formation of Byproducts
7
7. Reversible Hydride Addition to the Cationic BnBIP Derivative 1c

Similar articles

References

    1. Reglier, M. Bioinspired Chemistry. From Enzymes to Synthetic Models; World Scientific, 2019.
    2. Das A., Hessin C., Ren Y., Desage-El Murr M.. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chem. Soc. Rev. 2020;49(23):8840–8867. doi: 10.1039/D0CS00914H. - DOI - PubMed
    1. Sellés Vidal L., Kelly C. L., Mordaka P. M., Heap J. T.. Review of NAD­(P)­H-dependent oxidoreductases: Properties, engineering and application. Biochim. Biophys. Acta, Proteins Proteomics. 2018;1866:327–347. doi: 10.1016/j.bbapap.2017.11.005. - DOI - PubMed
    2. Chen M.-W., Wu B., Liu Z., Zhou Y.-G.. Biomimetic Asymmetric Reduction Based on the Regenerable Coenzyme NAD­(P)H Models. Acc. Chem. Res. 2023;56:2096–2109. doi: 10.1021/acs.accounts.3c00129. - DOI - PubMed
    3. Roth S., Niese R., Müller M., Hall M.. Redox Out of the Box: Catalytic Versatility Across NAD­(P)­H-Dependent Oxidoreductases. Angew. Chem., Int. Ed. 2024;63:e202314740. doi: 10.1002/anie.202314740. - DOI - PubMed
    1. Nelson, D. L. ; Lehninger, A. L. ; Cox, M. M. . Lehninger principles of biochemistry; Macmillan, 2021.
    2. Berg, J. M. ; Gatto, G. J., Jr ; Hines, J. ; Tymoczko, J. L. ; Stryer, L. . Biochemistry; Macmillan Higher Education, 2023.
    3. Lippard, S. J. ; Berg, J. M. . Principles of Bioinorganic Chemistry; University Science Books, 1994.
    4. Ochiai, E. Bioinorganic Chemistry: A Survey; Academic Press, 2008.
    1. Special issues and article collections: Earth-Abundant Metals In Catalysis. In Eur. J. Org. Chem. Eurjoc-Special Collection; Wiley, 2017.
    2. Berben, L. ; de Bruin, B. . RSC Themed Collection “Earth Abundant Metals in Catalysis”. Edited by.
    3. Wheelhouse K. M. P., Webster R. L., Beutner G. L.. Organometallics: special issue “Advances and Applications in Catalysis with Earth-Abundant Metals. Editorial article. Organometallics. 2023;42:1677–1679. doi: 10.1021/acs.organomet.3c00292. - DOI
    1. Bellabarba R., Johnston P., Moss S., Sievers C., Subramaniam B., Tway C., Wang Z., Zhu H.. Net Zero Transition: Possible Implications for Catalysis. ACS Catal. 2023;13:7917–7928. doi: 10.1021/acscatal.3c01255. Reviews and books: - DOI
    2. Su B., Cao Z.-C., Shi Z.-J.. Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Acc. Chem. Res. 2015;48:886–896. doi: 10.1021/ar500345f. - DOI - PubMed
    3. Ni C., Ma X., Yang Z., Roesky H. W.. Recent Advances in Aluminum Compounds for Catalysis. Eur. J. Inorg. Chem. 2022;2022:e202100929. doi: 10.1002/ejic.202100929. - DOI
    4. Chong E., Wu H., Lee J., Forson K., Haddad N.. Recent Advances in Non-Precious Metal Catalysis. Org. Proc. Res. Develop. 2023;27:1931–1953. doi: 10.1021/acs.oprd.3c00310. - DOI
    5. Bullock, M. Catalysis without Precious Metals; Wiley, 2010.

LinkOut - more resources