Neoplastic transformation is enhanced by multiple low doses of fission-spectrum neutrons
- PMID: 4070554
Neoplastic transformation is enhanced by multiple low doses of fission-spectrum neutrons
Abstract
The neoplastic transformation of C3H mouse 10T1/2 cells was measured induced by fission-spectrum neutrons delivered at a high dose rate in five fractions over 4 days. The transformation frequency was significantly enhanced over that due to single equivalent total doses. These new data, in the low dose region, demonstrate an increased transformation frequency by fractionated versus single exposures of high-dose-rate fission-spectrum neutrons; an increase equal to that observed with low-dose-rate fission-spectrum neutrons (i.e., 0.086 rad/min). Estimates of the dose modifying factor (DMF), based upon the ratio of the initial linear portions of the induction curves for high and for low dose rates, suggest the same DMF (approximately 7.8) for both five daily fractions of high-dose-rate neutrons and for low-dose-rate neutrons. However, when these results are compared to those following high-dose-rate 60Co gamma rays (100 rad/min), the relative biological effectiveness (RBE) for low-dose-rate fission-spectrum neutrons based upon slope ratios is 19.6; similarly, the RBE relative to five daily fractions of 60Co gamma rays is 78.8.