Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025;40(3).
doi: 10.1264/jsme2.ME24067.

Metabolic Potential and Microbial Diversity of Late Archean to Early Proterozoic Ocean Analog Hot Springs of Japan

Affiliations
Free article

Metabolic Potential and Microbial Diversity of Late Archean to Early Proterozoic Ocean Analog Hot Springs of Japan

Fatima Li-Hau et al. Microbes Environ. 2025.
Free article

Abstract

Circumneutral iron-rich hot springs may represent analogues of Neoarchean to Paleoproterozoic oceans of early Earth, potentially providing windows into ancient microbial ecology. Here we sampled five Japanese hot springs to gain insights into functional processes and taxonomic diversity in these analog environments. Amplicon and metagenomic sequencing confirm a hypothesis where taxonomy is distinct between sites and linked to the geochemical setting. Metabolic functions shared among the springs include carbon fixation via the reductive pentose phosphate cycle, nitrogen fixation, and dissimilatory iron oxidation/reduction. Among the sites, Kowakubi was unique in that it was dominated by Hydrogenophilaceae, a group known for performing hydrogen oxidation, motivating a hypothesis that H2 as an electron donor may shape community composition even in the presence of abundant ferrous iron. Evidence for nitrogen cycling across the springs included N2 fixation, dissimilatory nitrate reduction to ammonia (DNRA), and denitrification. The low-salinity springs Furutobe and OHK lacked evidence for ammonium oxidation by ammonia monooxygenase, but evidence for complete nitrification existed at Kowakubi, Jinata, and Tsubakiyama. In most sites, the microaerophilic iron-oxidizing bacteria from the Zetaproteobacteria or Gammaproteobacteria classes had higher relative abundances than Cyanobacteria. Microaerophilic iron oxidizers may outcompete abiotic Fe oxidation, while being fueled by oxy-phototrophic Cyanobacteria. Our data provide a foundation for considering which factors may have controlled productivity and elemental cycling as Earth's oceans became oxygenated at the onset of the Great Oxidation Event.

Keywords: Precambrian Earth; early Earth primary productivity; ferruginous environments; hot spring; metagenomics; microbial iron oxidation.

PubMed Disclaimer

MeSH terms