Introducing metal-sulfur active sites in metal-organic frameworks via post-synthetic modification for hydrogenation catalysis
- PMID: 40707779
- DOI: 10.1038/s41557-025-01876-y
Introducing metal-sulfur active sites in metal-organic frameworks via post-synthetic modification for hydrogenation catalysis
Erratum in
-
Author Correction: Introducing metal-sulfur active sites in metal-organic frameworks via post-synthetic modification for hydrogenation catalysis.Nat Chem. 2025 Nov;17(11):1795. doi: 10.1038/s41557-025-01980-z. Nat Chem. 2025. PMID: 40987937 No abstract available.
Abstract
Metal-sulfur active sites play a central role in catalytic processes such as hydrogenation and dehydrogenation, yet the majority of active sites in these compounds reside on the surfaces and edges of catalyst particles, limiting overall efficiency. Here we present a strategy to embed metal-sulfur active sites into metal-organic frameworks (MOFs) by converting bridging or terminal chloride ligands into hydroxide and subsequently into sulfide groups through post-synthetic modification. We apply this method to two representative MOF families: one featuring one-dimensional metal-chloride chains and another containing discrete multinuclear metal clusters. Crystallographic and spectroscopic analyses confirm structural integrity and sulfide incorporation, and the transformation is monitored by in situ total scattering methods. The sulfided MOFs display enhanced catalytic activity in the selective hydrogenation of nitroarenes using molecular hydrogen. Density functional theory calculations indicate that sulfur incorporation promotes homolytic metal-ligand bond cleavage and facilitates H2 activation. This work establishes an approach to construct MOFs featuring accessible metal-sulfide sites.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.
Conflict of interest statement
Competing interests: O.K.F. has financial interest in NuMat Technologies, a start-up company that is seeking to commercialize MOFs. The remaining authors declare no competing interests.
References
-
- Vahrenkamp, H. Sulfur atoms as ligands in metal complexes. Angew. Chem. Int. Ed. 14, 322–329 (1975). - DOI
-
- Paradiso, V., Capaccio, V., Lamparelli, D. H. & Capacchione, C. Metal complexes bearing sulfur-containing ligands as catalysts in the reaction of CO2 with epoxides. Catalysts 10, 825 (2020). - DOI
-
- Hossain, K., Atta, S., Chakraborty, A. B., Karmakar, S. & Majumdar, A. Nonheme binuclear transition metal complexes with hydrosulfide and polychalcogenides. Chem. Commun. 60, 4979–4998 (2024). - DOI
-
- Kuwata, S. & Hidai, M. Hydrosulfido complexes of transition metals. Coord. Chem. Rev. 213, 211–305 (2001). - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
