The Impact of Exercise Capacity on Complex Neuromuscular Adaptations: A Narrative Review Based on a Rat Model System Selectively Bred for Low and High Response to Training
- PMID: 40720691
- PMCID: PMC12303563
- DOI: 10.1002/cph4.70029
The Impact of Exercise Capacity on Complex Neuromuscular Adaptations: A Narrative Review Based on a Rat Model System Selectively Bred for Low and High Response to Training
Abstract
There is scientific evidence that supports the association between aerobic exercise capacity and the risk of developing complex metabolic diseases. The factors that determine aerobic capacity can be categorized into two groups: intrinsic and extrinsic components. While exercise capacity is influenced by both the intrinsic fitness levels of an organism and the extrinsic factors that emerge during training, physiological adaptations to exercise training can differ significantly among individuals. The interplay between intrinsic and acquired exercise capacities represents an obstacle to recognizing the exact mechanisms connecting aerobic exercise capacity and human health. Despite robust clinical associations between disease and a sedentary state or condition, the precise causative links between aerobic exercise capacity and disease susceptibility are yet to be fully uncovered. To provide clues into the intricacies of poor aerobic metabolism in an exercise-resistant phenotype, over two decades ago a novel rat model system was developed through two-way artificial selection and raised the question of whether large genetic differences in training responsiveness would bring about aberrant systemic disorders and closely regulate the risk factors in health and diseases. Genetically heterogeneous outbred (N/NIH) rats were used as a founder population to develop contrasting animal models of high versus low intrinsic running capacity (HCR vs. LCR) and high versus low responsiveness to endurance training (HRT vs. LRT). The underlying hypothesis was that variation in capacity for energy transfer is the central mechanistic determinant of the divide between complex disease and health. The use of the outbred, genetically heterogeneous rat models for exercise capacity aims to capture the genetic complexity of complex diseases and mimic the diversity of exercise traits among humans. Accumulating evidence indicates that epigenetic markers may facilitate the transmission of effects from exercise and diet to subsequent generations, implying that both exercise and diet have transgenerational effects on health and fitness. The process of selective breeding based on the acquired change in maximal running distance achieved during a treadmill-running tests before and after 8 weeks of training generated rat models of high response to training (HRT) and low response to training (LRT). In an untrained state, both LRT and HRT rats exhibit comparable levels of exercise capacity and show no major differences in cardiorespiratory fitness (maximal oxygen consumption, VO2max). However, after training, the HRT rats demonstrate significant improvements in running distance, VO2max, as well as other classic markers of cardiorespiratory fitness. The LRT rats, on the other hand, show no gain in running distance or VO2max upon completing the same training regime. The purpose of this article is to provide an overview of studies using LRT and HRT models with a focus on differences in neuromuscular adaptations. This review also summarizes the involved molecular and cellular signaling pathways underlying skeletal muscle adaptations in LRT models in comparison to the HRT model, which responds positively to endurance training. The LRT-related adverse effects in neuromuscular responses seem to be primarily driven by: (i) impaired glucose tolerance or impaired insulin sensitivity, (ii) increased extracellular matrix (ECM) remodeling, (iii) loss of type I muscle fibers, (iv) mitochondrial dysfunction, and (v) intricate cellular signaling orchestrated by TGF-ß1-JNK and TNF-α-MAPK pathways. Alternatively, the HRT model demonstrates improved neurovascular and muscle remodeling responses and increased central nervous system excitability, which might reflect an inherent protective mechanism to stress events.
Keywords: aerobic exercise; central nervous system; exercise‐resistant phenotype; intrinsic running capacity; skeletal muscle.
© 2025 The Author(s). Comprehensive Physiology published by Wiley Periodicals LLC on behalf of American Physiological Society.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures




Similar articles
-
Physical exercise training interventions for children and young adults during and after treatment for childhood cancer.Cochrane Database Syst Rev. 2016 Mar 31;3(3):CD008796. doi: 10.1002/14651858.CD008796.pub3. Cochrane Database Syst Rev. 2016. PMID: 27030386 Free PMC article.
-
Physical exercise training interventions for children and young adults during and after treatment for childhood cancer.Cochrane Database Syst Rev. 2013 Apr 30;(4):CD008796. doi: 10.1002/14651858.CD008796.pub2. Cochrane Database Syst Rev. 2013. Update in: Cochrane Database Syst Rev. 2016 Mar 31;3:CD008796. doi: 10.1002/14651858.CD008796.pub3. PMID: 23633361 Updated.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Shared and distinct adaptations to early-life exercise training based on inborn fitness.J Physiol. 2025 Jun 15. doi: 10.1113/JP288331. Online ahead of print. J Physiol. 2025. PMID: 40517393
-
Interventions for promoting habitual exercise in people living with and beyond cancer.Cochrane Database Syst Rev. 2018 Sep 19;9(9):CD010192. doi: 10.1002/14651858.CD010192.pub3. Cochrane Database Syst Rev. 2018. PMID: 30229557 Free PMC article.
References
-
- Blair, S. N. , Kampert J. B., Kohl H. W., et al. 1996. “Influences of Cardiorespiratory Fitness and Other Precursors on Cardiovascular Disease and All‐Cause Mortality in Men and Women.” JAMA 276: 205–210. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials