Curcumin as Therapeutic Modulator of Impaired Antioxidant Defense System: Implications for Oxidative Stress-Associated Reproductive Dysfunction
- PMID: 40723310
- PMCID: PMC12292881
- DOI: 10.3390/biology14070750
Curcumin as Therapeutic Modulator of Impaired Antioxidant Defense System: Implications for Oxidative Stress-Associated Reproductive Dysfunction
Abstract
One of the critical challenges in assisted reproductive technology (ART) is the inadequacy of effective regulation of reactive oxygen species. Simultaneously, the endogenous antioxidant defense system plays a significant role in combating oxidative stress across various physiological stages of embryonic development. However, these intrinsic defense systems alone are insufficient as they rely on exogenous antioxidants that interact synergistically to enhance and sustain antioxidant capacity. Considering the principal role of antioxidants in mitigating oxidative stress in oocyte growth, identifying reliable and non-toxic antioxidants is an essential prerequisite for effective therapeutic applications. Thus, owing to the need to explore exogenous antioxidants, we attempted to summarize and analyze the literature data defining the potential use of curcumin in mitigating oxidative stress to promote oocyte maturation through in vivo and in vitro model studies. Recent studies demonstrated the protective role of curcumin against oxidative stress and the inflammatory response, primarily through the upregulation of key antioxidant enzymes (including SOD, CAT and GPx), a reduction in oxidative stress markers (e.g., ROS, MDA) and by suppressing the pro-inflammatory signaling pathways (such as NF-kB, JAK/STAT) while activating the NRF2/HO-1 pathway to further enhance the cellular antioxidant defense. Advancing curcumin as a therapeutic agent necessitates a thorough understanding of curcumin's molecular mechanisms and targeted pharmacological effectiveness to treat female infertility, and despite the progress in enhancing curcumin's bioavailability, the optimal dosing strategies still need to be defined. Future studies are required to develop strategies to augment antioxidant defense mechanisms (modeling in vivo and in vitro studies) using curcumin with a specific emphasis on curcumin's role in improving mitochondrial activity. This approach is expected to represent a significant advancement in the field of medicine, offering novel therapeutic possibilities.
Keywords: antioxidants; curcumin; female infertility; follicle growth; oxidative stress.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures






Similar articles
-
Systemic Inflammatory Response Syndrome.2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31613449 Free Books & Documents.
-
Antioxidants for male subfertility.Cochrane Database Syst Rev. 2014;(12):CD007411. doi: 10.1002/14651858.CD007411.pub3. Epub 2014 Dec 15. Cochrane Database Syst Rev. 2014. Update in: Cochrane Database Syst Rev. 2019 Mar 14;3:CD007411. doi: 10.1002/14651858.CD007411.pub4. PMID: 25504418 Updated.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Antioxidants for male subfertility.Cochrane Database Syst Rev. 2022 May 4;5(5):CD007411. doi: 10.1002/14651858.CD007411.pub5. Cochrane Database Syst Rev. 2022. PMID: 35506389 Free PMC article.
-
Management of urinary stones by experts in stone disease (ESD 2025).Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
References
-
- Ara C., Butt A.N., Ali S., Batool F., Shakir H.A., Arshad A. Abnormal Steroidogenesis, Oxidative Stress, and Reprotoxicity Following Prepubertal Exposure to Butylparaben in Mice and Protective Effect of Curcuma longa. Environ. Sci. Pollut. Res. 2021;28:6111–6121. doi: 10.1007/s11356-020-10819-8. - DOI - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous