Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations
- PMID: 40723922
- PMCID: PMC12293451
- DOI: 10.3390/biom15071051
Genetic Diversity in the Suppressyn Gene Sequence: From Polymorphisms to Loss-of-Function Mutations
Abstract
The suppressive regulator of cell fusion, suppressyn, is specifically expressed in the human placenta and is thought to play a crucial role in trophoblast fusion or syncytialization. Previous studies have suggested that alterations in its expression are associated with aberrant placental development, such as the immature placental morphology observed in Down syndrome, and may contribute to the pathogenesis of fetal growth restriction. While syncytialization in trophoblasts is an essential process for normal placental development, the precise molecular causes of its dysregulation remain poorly understood. In the present study, we aimed to elucidate the potential contribution of genomic variation to the loss of suppressyn function, extending previous analyses of expression abnormalities in perinatal disorders. Through sequence analysis, (1) we identified six polymorphisms within the coding region of the suppressyn gene, and (2) discovered that certain deletions and specific amino acid substitutions result in a complete loss of suppressyn-mediated inhibition of cell fusion. Although these mutations have not yet been reported in disease-associated genomic databases, our findings suggest that comprehensive genomic studies of perinatal and other disorders may reveal pathogenic variants of suppressyn, thereby uncovering novel genetic contributions to placental dysfunction. It is also anticipated that these findings might direct the development of therapeutic strategies targeting loss-of-function mutations.
Keywords: SNP; cell fusion; endogenous retroviruses (ERV); loss-of-function; suppressyn.
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Stem cell insights into human trophoblast lineage differentiation.Hum Reprod Update. 2016 Dec;23(1):77-103. doi: 10.1093/humupd/dmw026. Epub 2016 Sep 2. Hum Reprod Update. 2016. PMID: 27591247
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Derivation of trophoblast stem cells from naïve human pluripotent stem cells.Elife. 2020 Feb 12;9:e52504. doi: 10.7554/eLife.52504. Elife. 2020. PMID: 32048992 Free PMC article.
-
Gap junction connexins in female reproductive organs: implications for women's reproductive health.Hum Reprod Update. 2015 May-Jun;21(3):340-52. doi: 10.1093/humupd/dmv007. Epub 2015 Feb 9. Hum Reprod Update. 2015. PMID: 25667189
-
Use of biochemical tests of placental function for improving pregnancy outcome.Cochrane Database Syst Rev. 2015 Nov 25;2015(11):CD011202. doi: 10.1002/14651858.CD011202.pub2. Cochrane Database Syst Rev. 2015. PMID: 26602956 Free PMC article.
References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources