Tannic acid-iron stabilized probiotic silver nano hybrids: Multi-target gut microbiota modulation and intestinal barrier restoration
- PMID: 40727075
- PMCID: PMC12302189
- DOI: 10.1016/j.mtbio.2025.102106
Tannic acid-iron stabilized probiotic silver nano hybrids: Multi-target gut microbiota modulation and intestinal barrier restoration
Abstract
The limited efficacy and adverse effect profile of current pharmacological treatments for intestinal inflammation underscore the need for modalities that preserve gut microbiota balance while attenuating inflammation. The aim of this study was to develop and evaluate a BL@TA-FeIII@AgNPs system with a view to provide synergistic efficacy against intestinal injury. This research introduces an innovative hybrid bio nanocomposite, BL@TA-FeIII@AgNPs, comprising viable Bacillus licheniformis coated with a tannic-acid/FeIII coordination layer that nucleates and anchors 7 ± 1.5 nm silver nanoparticles. Characterization of this composite material was performed using TEM, EDS, XRD, and XPS. Functional assays included probiotic viability, tolerance to simulated gastric and intestinal fluids, and bactericidal activity against Escherichia coli and Staphylococcus aureus. In-depth safety evaluations were carried out using both cell cultures and a mouse model. Therapeutic effects in an acute LPS-endotoxemia mouse model were analyzed by 16S rRNA gene amplicon sequencing and untargeted LC-MS/MS metabolomics of cecal contents. Characterization confirmed structural integrity, colloidal stability in physiological media, and low cytotoxicity (IC50 > 100 μg Ag mL-1). BL@TA-FeIII@AgNPs restored transepithelial electrical resistance, lowered malondialdehyde levels, and reshaped microbiota composition and metabolite networks relative to LPS controls. Restoration of the Firmicutes: Bacteroidetes ratio and elevated short chain fatty acid concentrations support BL@TA-FeIII@AgNPs as a promising adjunctive strategy for acute endotoxin-induced intestinal injury.
Keywords: Bio-nanocomposites; Gut microbiota; Intestinal inflammation; Nanomedicine; Probiotics; Silver nanoparticles.
© 2025 The Authors.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures








Similar articles
-
Eco-friendly silver nanoparticles from garlic: a novel therapeutic approach for treating Escherichia fergusonii wound infections.Front Cell Infect Microbiol. 2025 Jun 30;15:1604507. doi: 10.3389/fcimb.2025.1604507. eCollection 2025. Front Cell Infect Microbiol. 2025. PMID: 40661972 Free PMC article.
-
Synbiotics, prebiotics and probiotics for people with chronic kidney disease.Cochrane Database Syst Rev. 2023 Oct 23;10(10):CD013631. doi: 10.1002/14651858.CD013631.pub2. Cochrane Database Syst Rev. 2023. PMID: 37870148 Free PMC article.
-
Intestinal inflammation and microbiota modulation impact cochlear function: emerging insights in gut-ear axis.Cell Commun Signal. 2025 Jul 26;23(1):357. doi: 10.1186/s12964-025-02338-1. Cell Commun Signal. 2025. PMID: 40713718 Free PMC article.
-
Biological activities of optimized biosynthesized selenium nanoparticles using Proteus mirabilis PQ350419 alone or combined with chitosan and ampicillin against common multidrug-resistant bacteria.Microb Cell Fact. 2025 Jul 5;24(1):159. doi: 10.1186/s12934-025-02783-0. Microb Cell Fact. 2025. PMID: 40618114 Free PMC article.
-
Synbiotics, prebiotics and probiotics for solid organ transplant recipients.Cochrane Database Syst Rev. 2022 Sep 20;9(9):CD014804. doi: 10.1002/14651858.CD014804.pub2. Cochrane Database Syst Rev. 2022. PMID: 36126902 Free PMC article.
References
-
- Kangwan N., Kongkarnka S., Boonkerd N., Unban K., Shetty K., Khanongnuch C. Protective effect of probiotics isolated from traditional fermented tea leaves (miang) from northern Thailand and role of synbiotics in ameliorating experimental ulcerative colitis in mice. Nutrients. 2022;14 doi: 10.3390/nu14010227. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources