Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025;85(7):809.
doi: 10.1140/epjc/s10052-025-14445-x. Epub 2025 Jul 26.

Search for the in-situ production of 77 Ge in the GERDA neutrinoless double-beta decay experiment

M Agostini  1 A Alexander  1 G Araujo  2 A M Bakalyarov  3 M Balata  4 I Barabanov  5 L Baudis  2 C Bauer  6 S Belogurov  5   7   8 A Bettini  9   10 L Bezrukov  5 V Biancacci  11 E Bossio  12 V Bothe  6 R Brugnera  9   10 A Caldwell  13 S Calgaro  9   10 C Cattadori  14 A Chernogorov  7   3 P-J Chiu  2 T Comellato  12 V D'Andrea  11 E V Demidova  7 N Di Marco  15 E Doroshkevich  5 M Fomina  16 A Gangapshev  6   5 A Garfagnini  9   10 C Gooch  13 P Grabmayr  17 V Gurentsov  5 K Gusev  16   3   12 J Hakenmüller  6   18 S Hemmer  10 W Hofmann  6 J Huang  2 M Hult  19 L V Inzhechik  5   20 J Janicskó Csáthy  12   21 J Jochum  17 M Junker  4 V Kazalov  5 Y Kermaïdic  6 H Khushbakht  17 T Kihm  6 K Kilgus  17 I V Kirpichnikov  7 A Klimenko  16   6   22 K T Knöpfle  6 O Kochetov  16 V N Kornoukhov  5   8 P Krause  12 V V Kuzminov  5 M Laubenstein  4 M Lindner  6 I Lippi  10 A Lubashevskiy  16 B Lubsandorzhiev  5 G Lutter  19 C Macolino  11 B Majorovits  13 W Maneschg  6 G Marshall  1 M Misiaszek  23 M Morella  15 Y Müller  2 I Nemchenok  16   22 M Neuberger  12 L Pandola  24 K Pelczar  19 L Pertoldi  12   10 P Piseri  25 A Pullia  25 C Ransom  2 L Rauscher  17 M Redchuk  10 S Riboldi  25 N Rumyantseva  16   3 C Sada  9   10 S Sailer  6 F Salamida  11 S Schönert  12 J Schreiner  6 A-K Schütz  17   26 O Schulz  13 M Schwarz  12 B Schwingenheuer  6 O Selivanenko  5 E Shevchik  16 M Shirchenko  16 L Shtembari  13 H Simgen  6 A Smolnikov  16   6 D Stukov  3 S Sullivan  6 A A Vasenko  7 A Veresnikova  5 C Vignoli  4 K von Sturm  9   10 T Wester  27 C Wiesinger  12 M Wojcik  23 E Yanovich  5 B Zatschler  27 I Zhitnikov  16 S V Zhukov  3 D Zinatulina  16 A Zschocke  17 K Zuber  27 G Zuzel  23 GERDA collaboration
Affiliations

Search for the in-situ production of 77 Ge in the GERDA neutrinoless double-beta decay experiment

M Agostini et al. Eur Phys J C Part Fields. 2025.

Abstract

The beta decay of 77 Ge and 77 m Ge, both produced by neutron capture on 76 Ge, is a potential background for Germanium based neutrinoless double-beta decay search experiments such as GERDA or the LEGEND experiment. In this work we present a search for 77 Ge decays in the full GERDA Phase II data set. A delayed coincidence method was employed to identify the decay of 77 Ge via the isomeric state of 77 As ( 9 / 2 + , 475 keV , T 1 / 2 = 114 μ s , 77 m As). New digital signal processing methods were employed to select and analyze pile-up signals. No signal was observed, and an upper limit on the production rate of 77 Ge was set at < 0.216 nuc/(kg · yr) (90% CL). This corresponds to a total production rate of 77 Ge and 77 m Ge of < 0.38 nuc/(kg · yr) (90% CL), assuming equal production rates. A previous Monte Carlo study predicted a value for in-situ 77 Ge and 77 m Ge production of (0.21 ± 0.07) nuc/(kg.yr), a prediction that is now further corroborated by our experimental limit. Moreover, tagging the isomeric state of 77 m As can be utilised to further suppress the 77 Ge background. Considering the similar experimental configurations of LEGEND-1000 and GERDA, the cosmogenic background in LEGEND-1000 at LNGS is estimated to remain at a sub-dominant level.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Simplified decay scheme of 77Ge and 77mGe into 77As. 77mGe only populates states 216keV while 77Ge also populates higher states including the 9/2+ isomeric state in 77As with T1/2=114μs and an excitation energy of 475keV. Approximately 16% of 77Ge decays into this isomeric state, while more than 79% of 77Ge decays populate states above (not drawn) and can also populate the isomeric state from above. This plot was generated from the values of [7]
Fig. 2
Fig. 2
Simulated energy distribution of the delayed gamma emission from the isomeric state in 77As deposited in a HPGe. The peaks correspond to the full energy deposition of both gammas in the detector at 475keV or the full energy deposition of only one of the gammas in the detector at 211keV or 264keV. The energy resolutions of each individual detector derived from the standard GERDA analysis were implemented
Fig. 3
Fig. 3
An example of pile-up signal reconstruction. (Top) Example of a pile-up event waveform in the GERDA data stream. (Bottom) The waveform of the example pile-up event after applying a trapezoidal filter. The time difference between the signals is estimated by taking the difference between the triggers. Finally, the signal heights are extracted with a fixed time pick off
Fig. 4
Fig. 4
Reconstructed energy spectra for the first and second pulse in a pile-up signal in the calibration data where two signals are contained in the waveform of one event. The red histogram corresponds to the first pulses energies, while the blue histogram corresponds to the second pulses energies. The former distribution was scaled by a factor of 100 to illustrate the differences between the spectra. Both spectra reconstruct the expected 208Tl gamma lines well. The spectra of the second pulses consistently shows larger resolution and a slight tail to lower energies
Fig. 5
Fig. 5
Pile-up signal selection efficiency plotted over the time difference between generated pile-up signals. Our new DSP is sensitive for delayed coincidences starting at time differences >4.5μs. Individual events in this range were rejected due to quality cuts. Black: central value. Yellow: 68% uncertainty band
Fig. 6
Fig. 6
The distribution of all 8 candidate delayed coincidences after the multiplicity condition plotted dT over Ed. The energy windows around the points correspond to the linear combination of the full-width-at-tenth-maximum (FWTM) window (yellow) plus the asymmetric bias window (red). The FWTM window covers about 97% of the gamma peak area. The vertical size of the data is enlarged for better visualization. The blue lines correspond to the gamma energies of the internal transitions from 77mAs . A delayed coincidence candidate is rejected, if its energy window misses any of the three gamma lines. We found no candidate delayed coincidence that satisfies this condition resulting in Nobs=0cts. The right part shows a projection of the candidates onto dT. The blue line corresponds to the expected distribution for 77mAs delayed coincidences
Fig. 7
Fig. 7
Bayesian update of the simulated production rate using the likelihood of the GERDA data estimated in this analysis

References

    1. M. Agostini et al. (GERDA Collab.), Upgrade for Phase II of the GERDA experiment. Eur. Phys. J. C 78, 388 (2018). 10.1140/epjc/s10052-018-5812-2
    1. M. Agostini et al. (GERDA Collab.), Final results of GERDA on the search for neutrinoless Double-formula image decay. Phys. Rev. Lett. 125, 252502 (2020). 10.1103/PhysRevLett.125.252502 - PubMed
    1. L. Pandola et al., Monte Carlo evaluation of the muon-induced background in the GERDA double beta decay experiment. Nucl. Instrum. Methods A 570, 149–158 (2007). 10.1016/j.nima.2006.10.103
    1. C. Wiesinger, L. Pandola, S. Schönert, Virtual depth by active background suppression: revisiting the cosmic muon induced background of GERDA Phase II. Eur. Phys. J. C 78, 597 (2018). 10.1140/epjc/s10052-018-6079-3
    1. N. Abgrall et al. (LEGEND Collab.), The Large Enriched Germanium Experiment for Neutrinoless formula image Decay: LEGEND-1000 Preconceptual Design Report (2021). 10.48550/arXiv.2107.11462

LinkOut - more resources