Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Oct 6;224(10):e202412224.
doi: 10.1083/jcb.202412224. Epub 2025 Jul 29.

FUT8-mediated core fucosylation stabilizes TMEM67 to promote ciliogenesis

Affiliations

FUT8-mediated core fucosylation stabilizes TMEM67 to promote ciliogenesis

Difei Wang et al. J Cell Biol. .

Abstract

Glycosylation of membrane proteins plays an essential role in diverse biological processes. However, it remains unknown whether this posttranslational modification occurs on ciliary membrane proteins. Herein, by mass spectrometry-based proteomic analysis, we demonstrate that multiple membrane proteins localized in the ciliary transition zone undergo core fucosylation, an N-linked glycosylation specifically catalyzed by fucosyltransferase 8 (FUT8). In-depth analysis reveals that FUT8 interacts with transmembrane protein 67 (TMEM67), a transition zone component closely linked to ciliopathies, and catalyzes its core fucosylation. Functional investigation shows that core fucosylation stabilizes TMEM67 by impeding its degradation via the autophagy pathway, thereby ensuring its proper localization to the transition zone to promote cilium formation. Fut8-deficient mice exhibit ciliary defects in multiple organs, such as the kidney, brain, and trachea. These findings uncover a critical role for TMEM67 core fucosylation in ciliogenesis and have important implications for the pathogenesis of ciliopathies.

PubMed Disclaimer

LinkOut - more resources