Target Mapping in Cancer: Ligandable Protein Pockets on 3D OncoPPI Networks
- PMID: 40732248
- PMCID: PMC12298929
- DOI: 10.3390/ph18070958
Target Mapping in Cancer: Ligandable Protein Pockets on 3D OncoPPI Networks
Abstract
Background/Objectives: Studying protein-protein interaction (PPI) networks is crucial in understanding cancer phenotypes and molecular mechanisms. Here, we focus on PPIs involved in 12 different types of cancer (oncoPPIs), highlighting those protein pockets serving as outposts to modulate protein functioning. Methods: To explore these cavities linked to the cancer phenotype changes, we built a comprehensive pocketome of 314 crystallographically solved oncoPPIs. Based on this experimental data, we identified and investigated all ligandable protein pockets by employing 3D geometric and energetic descriptors. These pockets were classified as suitable for designing new oncoPPI modulators or PROTACs. The ligand-bound crystallographic pockets were analyzed to compare their properties across cancer types. Finally, 3D oncoPPI networks were built for each cancer type to identify highly connected proteins acting as hubs. Results: Combining interaction networks with structural pocket data helps identify cancer-relevant proteins and key interacting residues. Using this approach, we present clinical examples (e.g., S100A1, NRP1, CTNNB1, VCP) to show the therapeutic value of targeting ligandable 3D oncoPPIs. We also provide a publicly available reference dataset supporting future research. Conclusions: Notably, this study offers a flexible framework for evaluating and prioritizing novel disease targets.
Keywords: 3D oncoPPI networks; PPIs modulators; PROTACs; ligandable pockets; pocketome analysis; target prioritization in cancer.
Conflict of interest statement
Authors Gabriele Menna and Lydia Siragusa were employed by the company Molecular Discovery Ltd. Author Lydia Siragusa was employed by the company Molecular Horizon srl. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures









Similar articles
-
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.Health Soc Care Deliv Res. 2025 Jun;13(24):1-120. doi: 10.3310/HGTQ8159. Health Soc Care Deliv Res. 2025. PMID: 40548558
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513. Cochrane Database Syst Rev. 2023. PMID: 37254718 Free PMC article.
-
Interventions to improve safe and effective medicines use by consumers: an overview of systematic reviews.Cochrane Database Syst Rev. 2014 Apr 29;2014(4):CD007768. doi: 10.1002/14651858.CD007768.pub3. Cochrane Database Syst Rev. 2014. PMID: 24777444 Free PMC article.
References
-
- OECD . Tackling the Impact of Cancer on Health, the Economy and Society, OECD Health Policy Studies. OECD Publishing; Paris, France: 2024. - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous