Identification of an on-pathway intermediate illuminates the kinetic competition between protein folding and misfolding
- PMID: 40737324
- PMCID: PMC12337298
- DOI: 10.1073/pnas.2425999122
Identification of an on-pathway intermediate illuminates the kinetic competition between protein folding and misfolding
Abstract
Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. However, as protein length increases so does the competition between off-pathway misfolding and on-pathway folding, creating a more complex energy landscape ("folding funnel"). Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape. Previously, we reported extremely slow folding rates for the 539 aa β-helical passenger domain of pertactin (P.69T), including conditions that favor the formation of a kinetically trapped, off-pathway partially folded state (PFS). Existence of an on-pathway intermediate for P.69T folding was speculated but its characterization remained elusive. In this work, we exploited the extremely slow kinetics of PFS unfolding to develop a double-jump "denaturant challenge" assay. With this assay, we identified a transient unfolding intermediate, PFS*, that adopts a similar structure to PFS, including C-terminal folded structure and a disordered N terminus, yet unfolds much more quickly than PFS. Additional experiments revealed that PFS* also functions as an on-pathway intermediate for P.69T folding. Collectively, these results support a C-to-N-terminal model for P.69T folding, with folding initiated in the C-terminus with the rate-limiting formation of the transient on-pathway PFS* intermediate, which sits at the junction of the kinetic competition between folding and misfolding. Notably, processive folding from C-to-N terminus also occurs during C-to-N-terminal translocation of P.69T across the bacterial outer membrane. These results illuminate the crucial role of kinetics when navigating a complex energy landscape for protein folding.
Keywords: autotransporter; energy landscape; folding funnel; parallel β-helix.
Conflict of interest statement
Competing interests statement:The authors declare no competing interest.
Update of
-
Discovery of an on-pathway protein folding intermediate illuminates the kinetic competition between folding and misfolding.bioRxiv [Preprint]. 2024 Dec 17:2024.12.14.628475. doi: 10.1101/2024.12.14.628475. bioRxiv. 2024. Update in: Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2425999122. doi: 10.1073/pnas.2425999122. PMID: 39868219 Free PMC article. Updated. Preprint.
Similar articles
-
Discovery of an on-pathway protein folding intermediate illuminates the kinetic competition between folding and misfolding.bioRxiv [Preprint]. 2024 Dec 17:2024.12.14.628475. doi: 10.1101/2024.12.14.628475. bioRxiv. 2024. Update in: Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2425999122. doi: 10.1073/pnas.2425999122. PMID: 39868219 Free PMC article. Updated. Preprint.
-
Sexual Harassment and Prevention Training.2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Mar 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 36508513 Free Books & Documents.
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Sertindole for schizophrenia.Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2. Cochrane Database Syst Rev. 2005. PMID: 16034864 Free PMC article.
-
Nivolumab for adults with Hodgkin's lymphoma (a rapid review using the software RobotReviewer).Cochrane Database Syst Rev. 2018 Jul 12;7(7):CD012556. doi: 10.1002/14651858.CD012556.pub2. Cochrane Database Syst Rev. 2018. PMID: 30001476 Free PMC article.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources