Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Guideline
. 2025 Jul;48(3):e49.
doi: 10.12771/emj.2025.00661. Epub 2025 Jul 31.

The TRIPOD-LLM reporting guideline for studies using large language models: a Korean translation

Affiliations
Guideline

The TRIPOD-LLM reporting guideline for studies using large language models: a Korean translation

Jack Gallifant et al. Ewha Med J. 2025 Jul.
No abstract available

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

DSB is an associate editor at Radiation Oncology and HemOnc.org, receives research funding from the American Association for Cancer Research, and provides advisory and consulting services for Mercurial AI. DDF is an associate editor at the Journal of the American Medical Informatics Association, is a member of the editorial board of Scientific Data, and receives funding from the intramural research program at the US National Library of Medicine, NIH. JWG is a member of the editorial board of Radiology: Artificial Intelligence, BJR Artificial Intelligence, and NEJM AI. All other authors declare no potential conflict of interest relevant to this article.

Figures

Fig. 1.
Fig. 1.
TRIPOD-LLM 워크플로우. TRIPOD-LLM 체크리스트 워크플로우는 총 59개의 보고 항목으로 시작하며, 연구과업(예: 분류, 요약)과 연구설계(예: LLM 평가) 선택에 따라 필요한 항목 수가 점차 줄어든다. 두 가지 모두 선택한 후에는, 보고에 필요한 항목만 필터링된 목록이 생성된다. TRIPOD, transparent reporting of a multivariable model for individual prognosis or diagnosis; LLM, large language model.

References

    1. doi: 10.48550/arXiv.2311.16079. Chen Z, Cano AH, Romanou A, Bonnet A, Matoba K, Salvi F, Pagliardini M, Fan S, Kopf A, Mohtashami A, Sallinen A. Meditron-70B: scaling medical pretraining for large language models. arXiv [Preprint] 2023 Nov 27. https://doi.org/10.48550/arXiv.2311.16079. - DOI - DOI
    1. doi: 10.48550/arXiv.2303.08774. OpenAI, Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J, Altman S, Anadkat S, Avila R, Babuschkin I, Balaji S, Balcom V, Baltescu P, Bao H, Bavarian M, Belgum J, Bello I, Berdine J, Bernadett-Shapiro G, Berner C, Bogdonoff L, Boiko O, Boyd M, Brakman AL, Brockman G, Brooks T, Brundage M, Button K, Cai T, Campbell R, Cann A, Carey B, Carlson C, Carmichael R, Chan B, Chang C, Chantzis F, Chen D, Chen S, Chen R, Chen J, Chen M, Chess B, Cho C, Chu C, Chung HW, Cummings D, Currier J, Dai Y, Decareaux C, Degry T, Deutsch N, Deville D, Dhar A, Dohan D, Dowling S, Dunning S, Ecoffet A, Eleti A, Eloundou T, Farhi D, Fedus L, Felix N, Fishman SP, Forte J, Fulford I, Gao L, Georges E, Gibson C, Goel V, Gogineni T, Goh G, Gontijo-Lopes R, Gordon J, Grafstein M, Gray S, Greene R, Gross J, Gu SS, Guo Y, Hallacy C, Han J, Harris J, He Y, Heaton M, Heidecke J, Hesse C, Hickey A, Hickey W, Hoeschele P, Houghton B, Hsu K, Hu S, Hu X, Huizinga J, Jain S, Jain S. GPT-4 technical report. arXiv [Preprint] 2023 Dec 19. https://doi.org/10.48550/arXiv.2303.08774. - DOI - DOI
    1. Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, Scales N, Tanwani A, Cole-Lewis H, Pfohl S, Payne P, Seneviratne M, Gamble P, Kelly C, Babiker A, Scharli N, Chowdhery A, Mansfield P, Demner-Fushman D, Aguera Y Arcas B, Webster D, Corrado GS, Matias Y, Chou K, Gottweis J, Tomasev N, Liu Y, Rajkomar A, Barral J, Semturs C, Karthikesalingam A, Natarajan V. Large language models encode clinical knowledge. Nature. 2023;620:172–180. doi: 10.1038/s41586-023-06291-2. https://doi.org/10.1038/s41586-023-06291-2 . - DOI - DOI - PMC - PubMed
    1. Tai-Seale M, Baxter SL, Vaida F, Walker A, Sitapati AM, Osborne C, Diaz J, Desai N, Webb S, Polston G, Helsten T, Gross E, Thackaberry J, Mandvi A, Lillie D, Li S, Gin G, Achar S, Hofflich H, Sharp C, Millen M, Longhurst CA. AI-generated draft replies integrated into health records and physicians’ electronic communication. JAMA Netw Open. 2024;7:e246565. doi: 10.1001/jamanetworkopen.2024.6565. https://doi.org/10.1001/jamanetworkopen.2024.6565 . - DOI - DOI - PMC - PubMed
    1. Tierney AA, Gayre G, Hoberman B, Mattern B, Ballesca M, Kipnis P, Liu V, Lee K. Ambient artificial intelligence scribes to alleviate the burden of clinical documentation. NEJM Catal Innov Care Deliv. 2024;5:CAT.23.0404. doi: 10.1056/CAT.23.0404. https://doi.org/10.1056/CAT.23.0404 . - DOI - DOI

Publication types

LinkOut - more resources