Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 20;134(24):240803.
doi: 10.1103/PhysRevLett.134.240803.

Deterministic Generation of Frequency-Bin-Encoded Microwave Photons

Affiliations

Deterministic Generation of Frequency-Bin-Encoded Microwave Photons

Jiaying Yang et al. Phys Rev Lett. .

Abstract

A distributed quantum computing network requires a quantum communication channel between spatially separated processing units. In superconducting circuits, such a channel can be implemented based on propagating microwave photons to encode and transfer quantum information between an emitter and a receiver. However, traveling microwave photons can be lost during the transmission, leading to the failure of information transfer. Heralding protocols can be used to detect such photon losses. In this Letter, we propose such a protocol and experimentally demonstrate a frequency-bin encoding method of microwave photonic modes using superconducting circuits. We deterministically encode the quantum information from a superconducting qubit by simultaneously emitting its information into two photonic modes at different frequencies, with a process fidelity of 94.9%. The frequency-bin-encoded photonic modes can be used, at the receiver processor, to detect the occurrence of photon loss. Our Letter thus provides a reliable method to implement high-fidelity quantum state transfer in a distributed quantum computing network, incorporating error detection to enhance performance and accuracy.

PubMed Disclaimer

LinkOut - more resources