Active bacterial baths in droplets
- PMID: 40743394
- PMCID: PMC12337346
- DOI: 10.1073/pnas.2426096122
Active bacterial baths in droplets
Abstract
Suspensions of self-propelled objects represent a novel paradigm in colloidal science. In such "active baths," traditional concepts such as Brownian motion, fluctuation-dissipation relations, and work extraction from heat reservoirs, must be extended beyond the conventional framework of thermal baths. Unlike thermal baths, which are characterized by a single parameter, the temperature, the fundamental descriptors of an active bath remain elusive. Particularly relevant are confined environments, which are common conditions for bacteria in Nature and in microbioreactor devices. In this study, buoyant passive tracers are employed as generalized probes to extract the properties of an active bath comprising motile bacteria confined within a droplet. By describing the bacterial suspension as a colored noise acting on the tracer, we extract the temporal memory [Formula: see text] and characteristic intensity [Formula: see text] of such noise, finding that [Formula: see text] varies little across the explored experimental conditions and [Formula: see text] is positively correlated with bacterial concentration. Notably, we put forward the generalizing concept of "bath diffusivity," [Formula: see text], as a central predictor for the momentum transfer properties of this out-of-equilibrium situation. We show that [Formula: see text] scales linearly with bacterial concentration, modulated by a factor representing the role of confinement, expressed as the ratio of the confining radius to the probe radius. This finding, while still awaiting a complete theoretical explanation, offers insights into the transport or mixing properties of confined active baths and paves the way for a deeper understanding of active emulsions driven by confined active matter.
Keywords: active bath; colored noise; confinement.
Conflict of interest statement
Competing interests statement:The authors declare no competing interest.
References
-
- Einstein A., Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905).
-
- Wu X. L., Libchaber A., Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, 3017–3020 (2000). - PubMed
-
- Dunkel J., Putz V. B., Zaid I. M., Yeomans J. M., Swimmer-tracer scattering at low Reynolds number. Soft Matter 6, 4268 (2010).
-
- Thiffeault J. L., Childress S., Stirring by swimming bodies. Phys. Lett. A 374, 3487–3490 (2010).
-
- Miño G. L., Dunstan J., Rousselet A., Clément E., Soto R., Induced diffusion of tracers in a bacterial suspension: Theory and experiments. J. Fluid Mech. 729, 423–444 (2013).
MeSH terms
Grants and funding
- 1210634/ANID | Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)
- 1220536/ANID | Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)
- NCN19_170/Agencia Nacional de Investigación y Desarrollo (ANID)
- ECOS210012/Agencia Nacional de Investigación y Desarrollo (ANID)
- 21201766/Agencia Nacional de Investigación y Desarrollo (ANID)
- C21E05/Centre National de la Recherche Scientifique (CNRS)
- 22-CE30-0038/Agence Nationale de la Recherche (ANR)
- post-doctoral Grant/CNRS | Institut des sciences de l'ingénierie et des systèmes (INSIS)
- MITI-"Auto-Organisation 2021/Centre National de la Recherche Scientifique (CNRS)
- 21150648/Agencia Nacional de Investigación y Desarrollo (ANID)
LinkOut - more resources
Full Text Sources