Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 31:ocaf120.
doi: 10.1093/jamia/ocaf120. Online ahead of print.

Predicting intracranial pressure monitor placement in children with traumatic brain injury: a prospective cohort study to develop a clinical decision support tool

Affiliations

Predicting intracranial pressure monitor placement in children with traumatic brain injury: a prospective cohort study to develop a clinical decision support tool

Seth Russell et al. J Am Med Inform Assoc. .

Abstract

Objective: Clinicians currently make decisions about placing an intracranial pressure (ICP) monitor in children with traumatic brain injury (TBI) without the benefit of an accurate clinical decision support tool. The goal of this study was to develop and validate a model that predicts placement of an ICP monitor and updates as new information becomes available.

Materials and methods: A prospective observational cohort study was conducted from September 2014 to January 2024. The setting included one US hospital designated as an American College of Surgeons Level 1 Pediatric Trauma Center. Participants were 389 children with acute TBI admitted to the ICU who had at least one Glasgow Coma Scale (GCS) score ≤ 8 or intubation with at least one GCS-Motor ≤ 5. We excluded children who received ICP monitors prior to arrival, those with GCS = 3 and bilateral fixed, dilated pupils, and those with a do not resuscitate order.

Results: Of the 389 participants, 138 received ICP monitoring. Several machine learning models, including a recurrent neural network (RNN), were developed and validated using 4 combinations of input data. The best performing model, an RNN, achieved an F1 of 0.71 within 720 minutes of hospital arrival. The cumulative F1 of the RNN from minute 0 to 720 was 0.61. The best performing non-neural network model, standard logistic regression, achieved an F1 of 0.36 within 720 minutes of hospital arrival.

Conclusions: These findings will contribute to design and implementation of a multidisciplinary clinical decision support tool for ICP monitor placement in children with TBI.

Keywords: clinical decision support; intracranial hypertension; intracranial pressure; machine learning; pediatrics; traumatic brain injury.

PubMed Disclaimer

Similar articles

LinkOut - more resources